Joint Communication and Sensing over the Lossy Bosonic Quantum Channel
- URL: http://arxiv.org/abs/2411.11604v1
- Date: Mon, 18 Nov 2024 14:26:17 GMT
- Title: Joint Communication and Sensing over the Lossy Bosonic Quantum Channel
- Authors: Pere Munar-Vallespir, Janis Nötzel,
- Abstract summary: We study the problem of joint communication and sensing for data transmission systems.
We use optimal quantum instruments in order to transmit data and, at the same time, estimate environmental parameters.
- Score: 1.534667887016089
- License:
- Abstract: We study the problem of joint communication and sensing for data transmission systems using optimal quantum instruments in order to transmit data and, at the same time, estimate environmental parameters. In particular we consider the specific but at the same time generic case of a noiseless bosonic classical-quantum channel where part of the transmitted light is reflected back to the transmitter. While sending messages to the receiver, the transmitter tries at the same time to estimate the reflectivity of the channel. Extending earlier results on similar but finite-dimensional systems, we are able to characterize optimal tradeoffs between communication and detection rates. We also compare quantum performance to analogous classical models, quantifying the quantum advantage.
Related papers
- Three-Receiver Quantum Broadcast Channels: Classical Communication with Quantum Non-unique Decoding [44.37825061268399]
In network communication, there is a hierarchy among receivers based on information they decode due.
This hierarchy may result in varied information quality, such as higher-quality video for certain receivers.
We explore three-receiver quantum broadcast channels with two- and three-degraded message sets.
arXiv Detail & Related papers (2024-06-14T09:07:53Z) - Quantum-Amplified Simultaneous Quantum-Classical Communications [0.2982610402087727]
We investigate how to minimally alter classical FSO systems to provide some element of quantum communication coexisting with classical communications.
We show how this is indeed the case, but only at the cost of some additional receiver complexity, relative to standalone quantum communications.
arXiv Detail & Related papers (2024-05-15T06:44:01Z) - Time correlations in atmospheric quantum channels [0.0]
Efficient transfer of quantum information between remote parties is a crucial challenge for quantum communication over atmospheric channels.
Random fluctuations of the channel transmittance are a major disturbing factor for its practical implementation.
We study correlations between channel transmittances at different moments of time and focus on two transmission protocols.
arXiv Detail & Related papers (2023-11-13T20:25:36Z) - Synchronization of quantum communication over an optical classical
communication channel [0.0]
We introduce a synchronization technique that exploits a co-propagating classical optical communication link.
Our method exploits classical and quantum signals locked to the same master clock, allowing the receiver to synchronize both the classical and quantum communication links.
Our approach is suitable for both satellite and fiber infrastructures, where a classical and quantum channel can be transmitted through the same link.
arXiv Detail & Related papers (2023-06-30T12:23:52Z) - Relativistic quantum communication between harmonic oscillator detectors [0.0]
We study the evolution in time of the classical capacity after the detectors-field interaction is switched on.
We find a finite value of these parameters optimizing the communication of classical messages.
arXiv Detail & Related papers (2023-03-23T10:29:15Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Reinforcement-learning calibration of coherent-state receivers on
variable-loss optical channels [0.0]
We study the problem of calibrating a quantum receiver for optical coherent states when transmitted on a quantum optical channel with variable transmissivity.
We optimize the error probability of legacy adaptive receivers, such as Kennedy's and Dolinar's, on average with respect to the channel transmissivity distribution.
arXiv Detail & Related papers (2022-03-18T09:12:19Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.