Federated Incremental Named Entity Recognition
- URL: http://arxiv.org/abs/2411.11623v1
- Date: Mon, 18 Nov 2024 14:53:53 GMT
- Title: Federated Incremental Named Entity Recognition
- Authors: Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dong Yu,
- Abstract summary: Federated Named Entity Recognition (FNER) boosts model training within each local client by aggregating the model updates of decentralized local clients, without sharing their private data.
Existing FNER methods assume fixed entity types and local clients in advance, leading to their ineffectiveness in practical applications.
We propose a Local-Global Forgetting Defense (LGFD) model to overcome these challenges.
- Score: 38.49410747627772
- License:
- Abstract: Federated Named Entity Recognition (FNER) boosts model training within each local client by aggregating the model updates of decentralized local clients, without sharing their private data. However, existing FNER methods assume fixed entity types and local clients in advance, leading to their ineffectiveness in practical applications. In a more realistic scenario, local clients receive new entity types continuously, while new local clients collecting novel data may irregularly join the global FNER training. This challenging setup, referred to here as Federated Incremental NER, renders the global model suffering from heterogeneous forgetting of old entity types from both intra-client and inter-client perspectives. To overcome these challenges, we propose a Local-Global Forgetting Defense (LGFD) model. Specifically, to address intra-client forgetting, we develop a structural knowledge distillation loss to retain the latent space's feature structure and a pseudo-label-guided inter-type contrastive loss to enhance discriminative capability over different entity types, effectively preserving previously learned knowledge within local clients. To tackle inter-client forgetting, we propose a task switching monitor that can automatically identify new entity types under privacy protection and store the latest old global model for knowledge distillation and pseudo-labeling. Experiments demonstrate significant improvement of our LGFD model over comparison methods.
Related papers
- Overcoming Data and Model Heterogeneities in Decentralized Federated Learning via Synthetic Anchors [21.931436901703634]
Conventional Federated Learning (FL) involves collaborative training of a global model while maintaining user data privacy.
One of its branches, decentralized FL, is a serverless network that allows clients to own and optimize different local models separately.
We propose a novel Decentralized FL technique by introducing Synthetic Anchors, dubbed as DeSA.
arXiv Detail & Related papers (2024-05-19T11:36:45Z) - FedAL: Black-Box Federated Knowledge Distillation Enabled by Adversarial Learning [10.118046070458488]
We propose Federated knowledge distillation enabled by Adversarial Learning (FedAL) to address the data heterogeneity among clients.
First, to alleviate the local model output divergence across clients caused by data heterogeneity, the server acts as a discriminator to guide clients' local model training.
We design the less-forgetting regularization for both local training and global knowledge transfer to guarantee clients' ability to transfer/learn knowledge to/from others.
arXiv Detail & Related papers (2023-11-28T08:01:43Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning (FL) is a machine learning paradigm that enables clients to jointly train a global model by aggregating the locally trained models without sharing any local training data.
We propose a novel regularization technique based on adaptive self-distillation (ASD) for training models on the client side.
Our regularization scheme adaptively adjusts to the client's training data based on the global model entropy and the client's label distribution.
arXiv Detail & Related papers (2023-05-31T07:00:42Z) - No One Left Behind: Real-World Federated Class-Incremental Learning [111.77681016996202]
Local-Global Anti-forgetting (LGA) model addresses local and global catastrophic forgetting.
We develop a category-balanced gradient-adaptive compensation loss and a category gradient-induced semantic distillation loss.
It augments perturbed prototype images of new categories collected from local clients via self-supervised prototype augmentation.
arXiv Detail & Related papers (2023-02-02T06:41:02Z) - FRAug: Tackling Federated Learning with Non-IID Features via
Representation Augmentation [31.12851987342467]
Federated Learning (FL) is a decentralized learning paradigm in which multiple clients collaboratively train deep learning models.
We propose Federated Representation Augmentation (FRAug) to tackle this practical and challenging problem.
Our approach generates synthetic client-specific samples in the embedding space to augment the usually small client datasets.
arXiv Detail & Related papers (2022-05-30T07:43:42Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data.
We propose a novel federated learning algorithm with local drift decoupling and correction (FedDC)
Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters.
Experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks.
arXiv Detail & Related papers (2022-03-22T14:06:26Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.