The ethical landscape of robot-assisted surgery. A systematic review
- URL: http://arxiv.org/abs/2411.11637v1
- Date: Mon, 18 Nov 2024 15:15:24 GMT
- Title: The ethical landscape of robot-assisted surgery. A systematic review
- Authors: Joschka Haltaufderheide, Stefanie Pfisterer-Heise, Dawid Pieper, Robert Ranisch,
- Abstract summary: ethical issues of robot-assisted surgery have received less attention.
Seven major strands of the ethical debate emerged during analysis.
These include questions of harms and benefits, responsibility and control, professional-patient relationship, ethical issues in surgical training and learning, justice, translational questions, and economic considerations.
- Score: 0.0
- License:
- Abstract: Background: Robot-assisted surgery has been widely adopted in recent years. However, compared to other health technologies operating in close proximity to patients in a vulnerable state, ethical issues of robot-assisted surgery have received less attention. Against the background of increasing automation that are expected to raise new ethical issues, this systematic review aims to map the state of the ethical debate in this field. Methods: A protocol was registered in the international prospective register of systematic reviews (PROSPERO CRD42023397951). Medline via PubMed, EMBASE, CINHAL, Philosophers' Index, IEEE Xplorer, Web of Science (Core Collection), Scopus and Google Scholar were searched in January 2023. Screening, extraction, and analysis were conducted independently by two authors. A qualitative narrative synthesis was performed. Results: Out of 1,723 records, 66 records were included in the final dataset. Seven major strands of the ethical debate emerged during analysis. These include questions of harms and benefits, responsibility and control, professional-patient relationship, ethical issues in surgical training and learning, justice, translational questions, and economic considerations. Discussion: The identified themes testify to a broad range of different and differing ethical issues requiring careful deliberation and integration into the surgical ethos. Looking forward, we argue that a different perspective in addressing robotic surgical devices might be helpful to consider upcoming challenges of automation.
Related papers
- Ethical Concern Identification in NLP: A Corpus of ACL Anthology Ethics Statements [40.9861355779629]
We introduce EthiCon, a corpus of 1,580 ethical concern statements extracted from scientific papers published in the ACL Anthology.
Through a survey, we compare the ethical concerns of the corpus to the concerns listed by the general public and professionals in the field.
arXiv Detail & Related papers (2024-11-12T14:53:12Z) - Socially Pertinent Robots in Gerontological Healthcare [78.35311825198136]
This paper is an attempt to partially answer the question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities.
Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.
arXiv Detail & Related papers (2024-04-11T08:43:37Z) - AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps [3.8214695776749013]
This study conducts a comprehensive bibliometric analysis of the AI ethics literature over the past two decades.
They present seven key AI ethics issues, encompassing the Collingridge dilemma, the AI status debate, challenges associated with AI transparency and explainability, privacy protection complications, considerations of justice and fairness, concerns about algocracy and human enfeeblement, and the issue of superintelligence.
arXiv Detail & Related papers (2024-03-12T21:43:21Z) - A survey of recent methods for addressing AI fairness and bias in
biomedicine [48.46929081146017]
Artificial intelligence systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender.
We surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV)
We performed a literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords.
We reviewed other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.
arXiv Detail & Related papers (2024-02-13T06:38:46Z) - Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial
Intelligence [0.08192907805418582]
This study attempts to identify the major ethical principles influencing the utility performance of AI at different technological levels.
Justice, privacy, bias, lack of regulations, risks, and interpretability are the most important principles to consider for ethical AI.
We propose a new utilitarian ethics-based theoretical framework for designing ethical AI for the healthcare domain.
arXiv Detail & Related papers (2023-09-26T02:10:58Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Ethics for social robotics: A critical analysis [8.778914180886835]
Social robotics development for the practice of care and European prospects to incorporate these AI-based systems in institutional healthcare contexts call for an urgent ethical reflection.
Despite the growing attention to the ethical implications of social robotics, the current debate on one of its central branches, social assistive robotics (SAR), rests upon an impoverished ethical approach.
This paper presents and examines some tendencies of this prevailing approach, which have been identified as a result of a critical literature review.
arXiv Detail & Related papers (2022-07-25T22:18:00Z) - Breaking Bad News in the Era of Artificial Intelligence and Algorithmic
Medicine: An Exploration of Disclosure and its Ethical Justification using
the Hedonic Calculus [0.0]
We show how the 'Felicific Calculus' may have a timely quasi-quantitative application in the age of AI.
We show how this ethical algorithm can be used to assess, across seven mutually exclusive and exhaustive domains, whether an AI-supported action can be morally justified.
arXiv Detail & Related papers (2022-06-23T16:54:18Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [64.77385130665128]
The aim of this workshop is to foster the exchange of insights on past and ongoing research towards effective and long-lasting collaborations between humans and robots.
We particularly focus on AI techniques required to implement autonomous and proactive interactions.
arXiv Detail & Related papers (2022-06-07T11:12:45Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [65.60507052509406]
The aim of this workshop is to give researchers from academia and industry the possibility to discuss the inter-and multi-disciplinary nature of the relationships between people and robots.
arXiv Detail & Related papers (2021-03-23T16:52:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.