Towards Degradation-Robust Reconstruction in Generalizable NeRF
- URL: http://arxiv.org/abs/2411.11691v1
- Date: Mon, 18 Nov 2024 16:13:47 GMT
- Title: Towards Degradation-Robust Reconstruction in Generalizable NeRF
- Authors: Chan Ho Park, Ka Leong Cheng, Zhicheng Wang, Qifeng Chen,
- Abstract summary: Generalizable Radiance Field (GNeRF) across scenes has been proven to be an effective way to avoid per-scene optimization.
There has been limited research on the robustness of GNeRFs to different types of degradation present in the source images.
- Score: 58.33351079982745
- License:
- Abstract: Generalizable Neural Radiance Field (GNeRF) across scenes has been proven to be an effective way to avoid per-scene optimization by representing a scene with deep image features of source images. However, despite its potential for real-world applications, there has been limited research on the robustness of GNeRFs to different types of degradation present in the source images. The lack of such research is primarily attributed to the absence of a large-scale dataset fit for training a degradation-robust generalizable NeRF model. To address this gap and facilitate investigations into the degradation robustness of 3D reconstruction tasks, we construct the Objaverse Blur Dataset, comprising 50,000 images from over 1000 settings featuring multiple levels of blur degradation. In addition, we design a simple and model-agnostic module for enhancing the degradation robustness of GNeRFs. Specifically, by extracting 3D-aware features through a lightweight depth estimator and denoiser, the proposed module shows improvement on different popular methods in GNeRFs in terms of both quantitative and visual quality over varying degradation types and levels. Our dataset and code will be made publicly available.
Related papers
- SG-NeRF: Neural Surface Reconstruction with Scene Graph Optimization [16.460851701725392]
We present a novel approach that optimize radiance fields with scene graphs to mitigate the influence of outlier poses.
Our method incorporates an adaptive inlier-outlier confidence estimation scheme based on scene graphs.
We also introduce an effective intersection-over-union (IoU) loss to optimize the camera pose and surface geometry.
arXiv Detail & Related papers (2024-07-17T15:50:17Z) - Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View [17.214047499850487]
This paper focuses on constructing deblurred neural radiance fields (DeRF) from sparse-view for more pragmatic real-world scenarios.
Sparse-DeRF successfully regularizes the complicated joint optimization, presenting alleviated overfitting artifacts and enhanced quality on radiance fields.
We demonstrate the effectiveness of the Sparse-DeRF with extensive quantitative and qualitative experimental results by training DeRF from 2-view, 4-view, and 6-view blurry images.
arXiv Detail & Related papers (2024-07-09T07:36:54Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
We propose a novel approach for 3D mesh reconstruction from multi-view images.
Our method takes inspiration from large reconstruction models that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images.
arXiv Detail & Related papers (2024-06-09T05:19:24Z) - RaFE: Generative Radiance Fields Restoration [38.602849644666165]
NeRF (Neural Radiance Fields) has demonstrated tremendous potential in novel view synthesis and 3D reconstruction.
Previous methods for NeRF restoration are tailored for specific degradation type, ignoring the generality of restoration.
We propose a generic radiance fields restoration pipeline, named RaFE, which applies to various types of degradations.
arXiv Detail & Related papers (2024-04-04T17:59:50Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Enhancing High-Resolution 3D Generation through Pixel-wise Gradient
Clipping [46.364968008574664]
High-resolution 3D object generation remains a challenging task due to limited availability of comprehensive annotated training data.
Recent advancements have aimed to overcome this constraint by harnessing image generative models, pretrained on extensive curated web datasets.
We propose an innovative operation termed Pixel-wise Gradient Clipping (PGC) designed for seamless integration into existing 3D generative models.
arXiv Detail & Related papers (2023-10-19T05:15:17Z) - PlaNeRF: SVD Unsupervised 3D Plane Regularization for NeRF Large-Scale
Scene Reconstruction [2.2369578015657954]
Neural Radiance Fields (NeRF) enable 3D scene reconstruction from 2D images and camera poses for Novel View Synthesis (NVS)
NeRF often suffers from overfitting to training views, leading to poor geometry reconstruction.
We propose a new method to improve NeRF's 3D structure using only RGB images and semantic maps.
arXiv Detail & Related papers (2023-05-26T13:26:46Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
We present a method for synthesizing novel views from a single 360-degree RGB-D image based on the neural radiance field (NeRF)
Experiments demonstrated that the proposed method can synthesize plausible novel views while preserving the features of the scene for both artificial and real-world data.
arXiv Detail & Related papers (2022-03-18T13:49:25Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.