Competing Bandits in Decentralized Contextual Matching Markets
- URL: http://arxiv.org/abs/2411.11794v2
- Date: Thu, 19 Jun 2025 17:33:38 GMT
- Title: Competing Bandits in Decentralized Contextual Matching Markets
- Authors: Satush Parikh, Soumya Basu, Avishek Ghosh, Abishek Sankararaman,
- Abstract summary: We study decentralized learning in two-sided matching markets where the demand side (aka players or agents) competes for the supply side (aka arms)<n>Motivated by the linear contextual bandit framework, we assume that for each agent, an arm-mean may be represented by a linear function of a known feature vector and an unknown (agent-specific) parameter.<n>We propose learning algorithms to identify the latent environment and obtain stable matchings simultaneously.
- Score: 13.313881962771777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential learning in a multi-agent resource constrained matching market has received significant interest in the past few years. We study decentralized learning in two-sided matching markets where the demand side (aka players or agents) competes for the supply side (aka arms) with potentially time-varying preferences to obtain a stable match. Motivated by the linear contextual bandit framework, we assume that for each agent, an arm-mean may be represented by a linear function of a known feature vector and an unknown (agent-specific) parameter. Moreover, the preferences over arms depend on a latent environment in each round, where the latent environment varies across rounds in a non-stationary manner. We propose learning algorithms to identify the latent environment and obtain stable matchings simultaneously. Our proposed algorithms achieve instance-dependent logarithmic regret, scaling independently of the number of arms, and hence applicable for a large market.
Related papers
- Robust and Performance Incentivizing Algorithms for Multi-Armed Bandits with Strategic Agents [52.75161794035767]
We introduce a class of bandit algorithms that meet the two objectives of performance incentivization and robustness simultaneously.
We show that settings where the principal has no information about the arms' performance characteristics can be handled by combining ideas from second price auctions with our algorithms.
arXiv Detail & Related papers (2023-12-13T06:54:49Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Breaking the Curse of Multiagents in a Large State Space: RL in Markov
Games with Independent Linear Function Approximation [56.715186432566576]
We propose a new model, independent linear Markov game, for reinforcement learning with a large state space and a large number of agents.
We design new algorithms for learning correlated equilibria (CCE) and Markov correlated equilibria (CE) with sample bounds complexity that only scalely with each agent's own function class complexity.
Our algorithms rely on two key technical innovations: (1) utilizing policy replay to tackle non-stationarity incurred by multiple agents and the use of function approximation; and (2) separating learning Markov equilibria and exploration in the Markov games.
arXiv Detail & Related papers (2023-02-07T18:47:48Z) - Decentralized Competing Bandits in Non-Stationary Matching Markets [46.13741000158631]
We introduce the framework of decentralized two-sided matching market under non stationary (dynamic) environments.
We propose and analyze a decentralized and asynchronous learning algorithm, namely Decentralized Non-stationary Competing Bandits (textttDNCB)
We characterize this emphforced exploration and obtain sub-linear (logarithmic) regret of textttDNCB.
arXiv Detail & Related papers (2022-05-31T21:05:30Z) - Learn to Match with No Regret: Reinforcement Learning in Markov Matching
Markets [151.03738099494765]
We study a Markov matching market involving a planner and a set of strategic agents on the two sides of the market.
We propose a reinforcement learning framework that integrates optimistic value iteration with maximum weight matching.
We prove that the algorithm achieves sublinear regret.
arXiv Detail & Related papers (2022-03-07T19:51:25Z) - Using Non-Stationary Bandits for Learning in Repeated Cournot Games with
Non-Stationary Demand [11.935419090901524]
In this paper, we model repeated Cournot games with non-stationary demand.
The set of arms/actions that an agent can choose from represents discrete production quantities.
We propose a novel algorithm 'Adaptive with Weighted Exploration (AWE) $epsilon$-greedy' which is remotely based on the well-known $epsilon$-greedy approach.
arXiv Detail & Related papers (2022-01-03T05:51:47Z) - Modelling Cournot Games as Multi-agent Multi-armed Bandits [4.751331778201811]
We investigate the use of a multi-agent multi-armed bandit (MA-MAB) setting for modeling repeated Cournot oligopoly games.
We find that an $epsilon$-greedy approach offers a more viable learning mechanism than other traditional MAB approaches.
We propose two novel approaches that take advantage of the ordered action space: $epsilon$-greedy+HL and $epsilon$-greedy+EL.
arXiv Detail & Related papers (2022-01-01T22:02:47Z) - Learning Equilibria in Matching Markets from Bandit Feedback [139.29934476625488]
We develop a framework and algorithms for learning stable market outcomes under uncertainty.
Our work takes a first step toward elucidating when and how stable matchings arise in large, data-driven marketplaces.
arXiv Detail & Related papers (2021-08-19T17:59:28Z) - Resource Allocation in Multi-armed Bandit Exploration: Overcoming
Sublinear Scaling with Adaptive Parallelism [107.48538091418412]
We study exploration in multi-armed bandits when we have access to a divisible resource that can be allocated in varying amounts to arm pulls.
We focus in particular on the allocation of distributed computing resources, where we may obtain results faster by allocating more resources per pull.
arXiv Detail & Related papers (2020-10-31T18:19:29Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
We study the problem of decision-making in the setting of a scarcity of shared resources when the preferences of agents are unknown a priori.
Our approach is based on the representation of preferences in a reproducing kernel Hilbert space.
We derive optimal strategies that maximize agents' expected payoffs.
arXiv Detail & Related papers (2020-10-29T03:08:22Z) - Multi-agent Reinforcement Learning for Decentralized Stable Matching [13.563394785448192]
In the real world, people/entities usually find matches independently and autonomously, such as finding jobs, partners, roommates, etc.
It is possible that this search for matches starts with no initial knowledge of the environment.
We propose the use of a multi-agent reinforcement learning paradigm for a spatially formulated decentralized two-sided matching market.
arXiv Detail & Related papers (2020-05-03T15:28:41Z) - Contextual Blocking Bandits [35.235375147227124]
We study a novel variant of the multi-armed bandit problem, where at each time step, the player observes an independently sampled context that determines the arms' mean rewards.
Playing an arm blocks it (across all contexts) for a fixed and known number of future time steps.
We propose a UCB-based variant of the full-information algorithm that guarantees a $mathcalO(log T)$-regret w.r.t. an $alpha$regret strategy in $T time steps, matching the $Omega(log(T)$ lower bound
arXiv Detail & Related papers (2020-03-06T20:34:42Z) - Finite-Time Analysis of Round-Robin Kullback-Leibler Upper Confidence
Bounds for Optimal Adaptive Allocation with Multiple Plays and Markovian
Rewards [10.66048003460524]
We study an extension of the classic multi-armed bandit problem which involves multiple plays and Markovian rewards in the rested bandits setting.
In order to tackle this problem we consider an adaptive allocation rule which at each stage combines the information from the sample means of all the arms, with the Kullback-Leibler upper confidence bound of a single arm which is selected in round-robin way.
arXiv Detail & Related papers (2020-01-30T08:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.