Continuous Speculative Decoding for Autoregressive Image Generation
- URL: http://arxiv.org/abs/2411.11925v1
- Date: Mon, 18 Nov 2024 09:19:15 GMT
- Title: Continuous Speculative Decoding for Autoregressive Image Generation
- Authors: Zili Wang, Robert Zhang, Kun Ding, Qi Yang, Fei Li, Shiming Xiang,
- Abstract summary: Continuous-valued Autoregressive (AR) image generation models have demonstrated notable superiority over their discrete-token counterparts.
speculative decoding has proven effective in accelerating Large Language Models (LLMs)
This work generalizes the speculative decoding algorithm from discrete tokens to continuous space.
- Score: 33.05392461723613
- License:
- Abstract: Continuous-valued Autoregressive (AR) image generation models have demonstrated notable superiority over their discrete-token counterparts, showcasing considerable reconstruction quality and higher generation fidelity. However, the computational demands of the autoregressive framework result in significant inference overhead. While speculative decoding has proven effective in accelerating Large Language Models (LLMs), their adaptation to continuous-valued visual autoregressive models remains unexplored. This work generalizes the speculative decoding algorithm from discrete tokens to continuous space. By analyzing the intrinsic properties of output distribution, we establish a tailored acceptance criterion for the diffusion distributions prevalent in such models. To overcome the inconsistency that occurred in speculative decoding output distributions, we introduce denoising trajectory alignment and token pre-filling methods. Additionally, we identify the hard-to-sample distribution in the rejection phase. To mitigate this issue, we propose a meticulous acceptance-rejection sampling method with a proper upper bound, thereby circumventing complex integration. Experimental results show that our continuous speculative decoding achieves a remarkable $2.33\times$ speed-up on off-the-shelf models while maintaining the output distribution. Codes will be available at https://github.com/MarkXCloud/CSpD
Related papers
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding.
LANTERN increases speed-ups by $mathbf1.75times$ and $mathbf1.76times$, as compared to greedy decoding and random sampling.
arXiv Detail & Related papers (2024-10-04T12:21:03Z) - Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
Diffusion Forcing is a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels.
We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens.
arXiv Detail & Related papers (2024-07-01T15:43:25Z) - Autoregressive Image Generation without Vector Quantization [31.798754606008067]
Conventional wisdom holds that autoregressive models for image generation are typically accompanied by vector-quantized tokens.
We propose to model the per-token probability distribution using a diffusion procedure, which allows us to apply autoregressive models in a continuous-valued space.
arXiv Detail & Related papers (2024-06-17T17:59:58Z) - Iterative Token Evaluation and Refinement for Real-World
Super-Resolution [77.74289677520508]
Real-world image super-resolution (RWSR) is a long-standing problem as low-quality (LQ) images often have complex and unidentified degradations.
We propose an Iterative Token Evaluation and Refinement framework for RWSR.
We show that ITER is easier to train than Generative Adversarial Networks (GANs) and more efficient than continuous diffusion models.
arXiv Detail & Related papers (2023-12-09T17:07:32Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Variational Diffusion Auto-encoder: Latent Space Extraction from
Pre-trained Diffusion Models [0.0]
Variational Auto-Encoders (VAEs) face challenges with the quality of generated images, often presenting noticeable blurriness.
This issue stems from the unrealistic assumption that approximates the conditional data distribution, $p(textbfx | textbfz)$, as an isotropic Gaussian.
We illustrate how one can extract a latent space from a pre-existing diffusion model by optimizing an encoder to maximize the marginal data log-likelihood.
arXiv Detail & Related papers (2023-04-24T14:44:47Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Generation of data on discontinuous manifolds via continuous stochastic
non-invertible networks [6.201770337181472]
We show how to generate discontinuous distributions using continuous networks.
We derive a link between the cost functions and the information-theoretic formulation.
We apply our approach to synthetic 2D distributions to demonstrate both reconstruction and generation of discontinuous distributions.
arXiv Detail & Related papers (2021-12-17T17:39:59Z) - Symbolic Music Generation with Diffusion Models [4.817429789586127]
We present a technique for training diffusion models on sequential data by parameterizing the discrete domain in the continuous latent space of a pre-trained variational autoencoder.
We show strong unconditional generation and post-hoc conditional infilling results compared to autoregressive language models operating over the same continuous embeddings.
arXiv Detail & Related papers (2021-03-30T05:48:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.