Graph as a feature: improving node classification with non-neural graph-aware logistic regression
- URL: http://arxiv.org/abs/2411.12330v1
- Date: Tue, 19 Nov 2024 08:32:14 GMT
- Title: Graph as a feature: improving node classification with non-neural graph-aware logistic regression
- Authors: Simon Delarue, Thomas Bonald, Tiphaine Viard,
- Abstract summary: Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
- Score: 2.952177779219163
- License:
- Abstract: Graph Neural Networks (GNNs) and their message passing framework that leverages both structural and feature information, have become a standard method for solving graph-based machine learning problems. However, these approaches still struggle to generalise well beyond datasets that exhibit strong homophily, where nodes of the same class tend to connect. This limitation has led to the development of complex neural architectures that pose challenges in terms of efficiency and scalability. In response to these limitations, we focus on simpler and more scalable approaches and introduce Graph-aware Logistic Regression (GLR), a non-neural model designed for node classification tasks. Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities. However instead of relying on message passing, our approach encodes each node's relationships as an additional feature vector, which is then combined with the node's self attributes. Extensive experimental results, conducted within a rigorous evaluation framework, show that our proposed GLR approach outperforms both foundational and sophisticated state-of-the-art GNN models in node classification tasks. Going beyond the traditional limited benchmarks, our experiments indicate that GLR increases generalisation ability while reaching performance gains in computation time up to two orders of magnitude compared to it best neural competitor.
Related papers
- GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
We propose a novel framework that combines Graph Neural Network (GNN) and Generative Adrial Network (GAN) to enhance classification for underrepresented node classes.
The framework incorporates an advanced edge generation and selection module, enabling the simultaneous creation of synthetic nodes and edges.
arXiv Detail & Related papers (2023-12-11T16:52:20Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
Graph Neural Networks (GNNs) have led to state-of-the-art performance on a variety of machine learning tasks such as recommendation, node classification and link prediction.
Most existing GNN models exploit a single type of aggregator to aggregate neighboring nodes information.
We propose a novel graph neural network architecture, Graph Attention & Interaction Network (GAIN), for inductive learning on graphs.
arXiv Detail & Related papers (2020-11-03T00:20:24Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Adaptive Universal Generalized PageRank Graph Neural Network [36.850433364139924]
Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility.
We introduce a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights.
GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.
arXiv Detail & Related papers (2020-06-14T19:27:39Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.