Non-IID data in Federated Learning: A Systematic Review with Taxonomy, Metrics, Methods, Frameworks and Future Directions
- URL: http://arxiv.org/abs/2411.12377v1
- Date: Tue, 19 Nov 2024 09:53:28 GMT
- Title: Non-IID data in Federated Learning: A Systematic Review with Taxonomy, Metrics, Methods, Frameworks and Future Directions
- Authors: Daniel M. Jimenez G., David Solans, Mikko Heikkila, Andrea Vitaletti, Nicolas Kourtellis, Aris Anagnostopoulos, Ioannis Chatzigiannakis,
- Abstract summary: This systematic review aims to fill a gap by providing a detailed taxonomy for non-IID data, partition protocols, and metrics.
We describe popular solutions to address non-IID data and standardized frameworks employed in Federated Learning with heterogeneous data.
- Score: 2.9434966603161072
- License:
- Abstract: Recent advances in machine learning have highlighted Federated Learning (FL) as a promising approach that enables multiple distributed users (so-called clients) to collectively train ML models without sharing their private data. While this privacy-preserving method shows potential, it struggles when data across clients is not independent and identically distributed (non-IID) data. The latter remains an unsolved challenge that can result in poorer model performance and slower training times. Despite the significance of non-IID data in FL, there is a lack of consensus among researchers about its classification and quantification. This systematic review aims to fill that gap by providing a detailed taxonomy for non-IID data, partition protocols, and metrics to quantify data heterogeneity. Additionally, we describe popular solutions to address non-IID data and standardized frameworks employed in FL with heterogeneous data. Based on our state-of-the-art review, we present key lessons learned and suggest promising future research directions.
Related papers
- A review on different techniques used to combat the non-IID and
heterogeneous nature of data in FL [0.0]
Federated Learning (FL) is a machine-learning approach enabling collaborative model training across multiple edge devices.
The significance of FL is particularly pronounced in industries such as healthcare and finance, where data privacy holds paramount importance.
This report delves into the issues arising from non-IID and heterogeneous data and explores current algorithms designed to address these challenges.
arXiv Detail & Related papers (2024-01-01T16:34:00Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
Federated learning enables edge devices to train a global model collaboratively without exposing their data.
We tackle a new type of Non-IID data, called cluster-skewed non-IID, discovered in actual data sets.
We propose an aggregation scheme that guarantees equality between clusters.
arXiv Detail & Related papers (2023-02-21T02:53:37Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
Federated Learning is a novel framework that allows multiple devices or institutions to train a machine learning model collaboratively while preserving their data private.
In this work, we formally classify data statistical heterogeneity and review the most remarkable learning strategies that are able to face it.
At the same time, we introduce approaches from other machine learning frameworks, such as Continual Learning, that also deal with data heterogeneity and could be easily adapted to the Federated Learning settings.
arXiv Detail & Related papers (2021-11-26T09:57:11Z) - Semi-Supervised Federated Learning with non-IID Data: Algorithm and
System Design [42.63120623012093]
Federated Learning (FL) allows edge devices (or clients) to keep data locally while simultaneously training a shared global model.
The distribution of the client's local training data is non-independent identically distributed (non-IID)
We present a robust semi-supervised FL system design, where the system aims to solve the problem of data availability and non-IID in FL.
arXiv Detail & Related papers (2021-10-26T03:41:48Z) - Federated Learning on Non-IID Data Silos: An Experimental Study [34.28108345251376]
Training data have been increasingly fragmented, forming distributed databases of multiple data silos.
In this paper, we propose comprehensive data partitioning strategies to cover the typical non-IID data cases.
We find that non-IID does bring significant challenges in learning accuracy of FL algorithms, and none of the existing state-of-the-art FL algorithms outperforms others in all cases.
arXiv Detail & Related papers (2021-02-03T14:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.