Volume-law entanglement fragmentation of quasiparticles
- URL: http://arxiv.org/abs/2411.12379v1
- Date: Tue, 19 Nov 2024 09:57:40 GMT
- Title: Volume-law entanglement fragmentation of quasiparticles
- Authors: Jiaju Zhang,
- Abstract summary: We study the entanglement entropy in quasiparticle states where certain unit patterns are excited repeatedly and sequentially in momentum space.
We find that in the scaling limit, each unit pattern contributes independently and universally to the entanglement, leading to a volume-law scaling of the entanglement entropy.
- Score: 0.087024326813104
- License:
- Abstract: We study the entanglement entropy in quasiparticle states where certain unit patterns are excited repeatedly and sequentially in momentum space. We find that in the scaling limit, each unit pattern contributes independently and universally to the entanglement, leading to a volume-law scaling of the entanglement entropy. This characteristic of volume-law entanglement fragmentation is numerically confirmed in both fermionic and bosonic chains. We derive an analytical formula for fermions, which can also be applied to the spin-1/2 XXZ chain with appropriate identifications.
Related papers
- Entanglement Fractalization [9.254741613227333]
We numerically explore the interplay of fractal geometry and quantum entanglement by analyzing entanglement entropy and the entanglement contour in the scaling limit.
For gapless ground states exhibiting a finite density of states at the chemical potential, we reveal a super-area law.
A novel self-similar and universal pattern termed an entanglement fractal'' in the entanglement contour data as we approach the scaling limit bears resemblance to intricate Chinese paper-cutting designs.
arXiv Detail & Related papers (2023-11-02T12:50:27Z) - Shannon entropy in quasiparticle states of quantum chains [1.8689265251089047]
We investigate the Shannon entropy of the total system and its subsystems, as well as the subsystem Shannon mutual information, in quasiparticle excited states of free bosonic and fermionic chains.
For single-particle and double-particle states, we derive various analytical formulas for free bosonic and fermionic chains in the scaling limit.
We also calculate numerically the Shannon entropy and mutual information for triple-particle and quadruple-particle states in bosonic, fermionic, and XXX chains.
arXiv Detail & Related papers (2023-03-24T16:38:39Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Volume-to-Area Law Entanglement Transition in a non-Hermitian Free
Fermionic Chain [0.0]
We compute the entanglement entropy's dynamics in the thermodynamic limit and demonstrate an entanglement transition between volume-law and area-law scaling.
Interestingly we show that the entanglement transition and the $mathcalPT$-symmetry breaking do not coincide, the former occurring when the entire decay spectrum of the quasiparticle becomes gapped.
arXiv Detail & Related papers (2022-10-21T13:13:16Z) - Entanglement of magnon excitations in spin chains [0.24366811507669117]
In particular, we show that as far as the number of excited magnons with respect to the size of the system is small one can decompose the entanglement content.
Our results effectively classify the entanglement content of wide range of integrable spin chains in the scaling limit.
arXiv Detail & Related papers (2021-09-27T06:52:24Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Area-Law Study of Quantum Spin System on Hyperbolic Lattice Geometries [0.0]
Magnetic properties of the transverse-field Ising model on curved (hyperbolic) lattices are studied.
We identify the quantum phase transition for each hyperbolic lattice by calculating the magnetization.
We study the entanglement entropy at the phase transition in order to analyze the correlations of various subsystems.
arXiv Detail & Related papers (2020-03-24T08:48:36Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.