Enhancing Reasoning Capabilities of LLMs via Principled Synthetic Logic Corpus
- URL: http://arxiv.org/abs/2411.12498v1
- Date: Tue, 19 Nov 2024 13:31:53 GMT
- Title: Enhancing Reasoning Capabilities of LLMs via Principled Synthetic Logic Corpus
- Authors: Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, Yasuhiro Sogawa,
- Abstract summary: Large language models (LLMs) are capable of solving a wide range of tasks, yet they have struggled with reasoning.
We propose $textbfAdditional Logic Training (ALT)$, which aims to enhance LLMs' reasoning capabilities by program-generated logical reasoning samples.
- Score: 13.276829763453433
- License:
- Abstract: Large language models (LLMs) are capable of solving a wide range of tasks, yet they have struggled with reasoning. To address this, we propose $\textbf{Additional Logic Training (ALT)}$, which aims to enhance LLMs' reasoning capabilities by program-generated logical reasoning samples. We first establish principles for designing high-quality samples by integrating symbolic logic theory and previous empirical insights. Then, based on these principles, we construct a synthetic corpus named $\textbf{Formal Logic Deduction Diverse}$ ($\textbf{FLD}$$^{\times 2}$), comprising numerous samples of multi-step deduction with unknown facts, diverse reasoning rules, diverse linguistic expressions, and challenging distractors. Finally, we empirically show that ALT on FLD$^{\times2}$ substantially enhances the reasoning capabilities of state-of-the-art LLMs, including LLaMA-3.1-70B. Improvements include gains of up to 30 points on logical reasoning benchmarks, up to 10 points on math and coding benchmarks, and 5 points on the benchmark suite BBH.
Related papers
- P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains [97.25943550933829]
We present P-FOLIO, a human-annotated dataset consisting of diverse and complex reasoning chains.
We use P-FOLIO to evaluate and improve large-language-model (LLM) reasoning capabilities.
arXiv Detail & Related papers (2024-10-11T19:22:57Z) - Multi-LogiEval: Towards Evaluating Multi-Step Logical Reasoning Ability of Large Language Models [46.26140720993383]
Multi-LogiEval is a comprehensive evaluation dataset encompassing multi-step logical reasoning with various inference rules and depths.
We conduct evaluations on a range of Large Language Models including GPT-4, ChatGPT, Gemini-Pro, Yi, Orca, and Mistral.
arXiv Detail & Related papers (2024-06-24T23:02:56Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Learning Deductive Reasoning from Synthetic Corpus based on Formal Logic [14.503982715625902]
We study a synthetic corpus based approach for language models (LMs) to acquire logical deductive reasoning ability.
We adopt a well-grounded set of deduction rules based on formal logic theory, which can derive any other deduction rules when combined in a multistep way.
We empirically verify that LMs trained on FLD corpora acquire more generalizable reasoning ability.
arXiv Detail & Related papers (2023-08-11T13:15:35Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training.
We devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion.
The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM.
arXiv Detail & Related papers (2023-05-23T06:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.