Quantum advantage from soft decoders
- URL: http://arxiv.org/abs/2411.12553v1
- Date: Tue, 19 Nov 2024 15:12:03 GMT
- Title: Quantum advantage from soft decoders
- Authors: André Chailloux, Jean-Pierre Tillich,
- Abstract summary: We provide improvements for some instantiations of the Optimal Polynomial Interpolation (OPI) problem.
Our results provide natural and convincing decoding problems for which we believe to have a quantum advantage.
In order to be able to use a decoder in the setting of Regev's reduction, we provide a novel reduction from a syndrome to a coset sampling problem.
- Score: 0.7728149002473877
- License:
- Abstract: In the last years, Regev's reduction has been used as a quantum algorithmic tool for providing a quantum advantage for variants of the decoding problem. Following this line of work, the authors of [JSW+24] have recently come up with a quantum algorithm called Decoded Quantum Interferometry that is able to solve in polynomial time several optimization problems. They study in particular the Optimal Polynomial Interpolation (OPI) problem, which can be seen as a decoding problem on Reed-Solomon codes. In this work, we provide strong improvements for some instantiations of the OPI problem. The most notable improvements are for the $ISIS_{\infty}$ problem (originating from lattice-based cryptography) on Reed-Solomon codes but we also study different constraints for OPI. Our results provide natural and convincing decoding problems for which we believe to have a quantum advantage. Our proof techniques involve the use of a soft decoder for Reed-Solomon codes, namely the decoding algorithm from Koetter and Vardy [KV03]. In order to be able to use this decoder in the setting of Regev's reduction, we provide a novel generic reduction from a syndrome decoding problem to a coset sampling problem, providing a powerful and simple to use theorem, which generalizes previous work and is of independent interest. We also provide an extensive study of OPI using the Koetter and Vardy algorithm.
Related papers
- Decoding Quasi-Cyclic Quantum LDPC Codes [23.22566380210149]
Quantum low-density parity-check (qLDPC) codes are an important component in the quest for fault tolerance.
Recent progress on qLDPC codes has led to constructions which are quantumally good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits.
In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice.
arXiv Detail & Related papers (2024-11-07T06:25:27Z) - Limitations of the decoding-to-LPN reduction via code smoothing [59.90381090395222]
The Learning Parity with Noise (LPN) problem underlies several classic cryptographic primitives.
This paper attempts to find a reduction from the decoding problem of linear codes, for which several hardness results exist.
We characterize the efficiency of the reduction in terms of the parameters of the decoding and problems.
arXiv Detail & Related papers (2024-08-07T12:54:43Z) - Efficient Encodings of the Travelling Salesperson Problem for Variational Quantum Algorithms [0.0]
We investigate different encodings for the Travelling Salesperson Problem.
We find evidence that the permutation encoding can yield good results since it does not suffer from feasibility issues.
arXiv Detail & Related papers (2024-04-08T12:30:07Z) - The Quantum Decoding Problem [0.23310087539224286]
We consider the quantum decoding problem, where we are given a superposition of noisy versions of a codeword.
We show that when the noise rate is small enough, then the quantum decoding problem can be solved in quantum time.
We also show that the problem can in principle be solved quantumly for noise rates for which the associated classical decoding problem cannot be solved.
arXiv Detail & Related papers (2023-10-31T17:21:32Z) - Viderman's algorithm for quantum LDPC codes [13.916368399461895]
We present a generalization of Viderman's algorithm to quantum LDPC codes.
This is the first erasure-conversion algorithm that can correct up to $Omega(D)$ errors for constant-rate quantum LDPC codes.
arXiv Detail & Related papers (2023-10-11T20:17:21Z) - Quantum Lego Expansion Pack: Enumerators from Tensor Networks [1.489619600985197]
We provide the first tensor network method for computing quantum weight enumerators in the most general form.
For non-(Pauli)-stabilizer codes, this constitutes the current best algorithm for computing the code distance.
We show that these enumerators can be used to compute logical error rates exactly and thus construct decoders for any i.i.d. single qubit or qudit error channels.
arXiv Detail & Related papers (2023-08-09T18:00:02Z) - Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes [59.55193427277134]
Reed-Muller (RM) codes achieve the capacity of general binary-input memoryless symmetric channels.
RM codes only admit limited sets of rates.
Efficient decoders are available for RM codes at finite lengths.
arXiv Detail & Related papers (2023-01-16T04:11:14Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.