SG-LRA: Self-Generating Automatic Scoliosis Cobb Angle Measurement with Low-Rank Approximation
- URL: http://arxiv.org/abs/2411.12604v1
- Date: Tue, 19 Nov 2024 16:07:58 GMT
- Title: SG-LRA: Self-Generating Automatic Scoliosis Cobb Angle Measurement with Low-Rank Approximation
- Authors: Zhiwen Shao, Yichen Yuan, Lizhuang Ma, Dit-Yan Yeung, Xiaojia Zhu,
- Abstract summary: We propose a framework including Self-Generation pipeline and Low-Rank Approximation representation (SG-LRA) for automatic Cobb angle measurement.
Specifically, we propose a parameterized spine contour representation based on LRA, which enables eigen-spine decomposition and spine contour reconstruction.
With our data engine, we generate the largest scoliosis X-ray dataset named Spinal-AI2024 largely without privacy leaks.
- Score: 38.35450156563293
- License:
- Abstract: Automatic Cobb angle measurement from X-ray images is crucial for scoliosis screening and diagnosis. However, most existing regression-based methods and segmentation-based methods struggle with inaccurate spine representations or mask connectivity/fragmentation issues. Besides, landmark-based methods suffer from insufficient training data and annotations. To address these challenges, we propose a novel framework including Self-Generation pipeline and Low-Rank Approximation representation (SG-LRA) for automatic Cobb angle measurement. Specifically, we propose a parameterized spine contour representation based on LRA, which enables eigen-spine decomposition and spine contour reconstruction. We can directly obtain spine contour with only regressed LRA coefficients, which form a more accurate spine representation than rectangular boxes. Also, we combine LRA coefficient regression with anchor box classification to solve inaccurate predictions and mask connectivity issues. Moreover, we develop a data engine with automatic annotation and automatic selection in an iterative manner, which is trained on a private Spinal2023 dataset. With our data engine, we generate the largest scoliosis X-ray dataset named Spinal-AI2024 largely without privacy leaks. Extensive experiments on public AASCE2019, private Spinal2023, and generated Spinal-AI2024 datasets demonstrate that our method achieves state-of-the-art Cobb angle measurement performance. Our code and Spinal-AI2024 dataset are available at https://github.com/Ernestchenchen/SG-LRA and https://github.com/Ernestchenchen/Spinal-AI2024, respectively.
Related papers
- SpineFM: Leveraging Foundation Models for Automatic Spine X-ray Segmentation [0.0]
This paper introduces SpineFM, a novel pipeline that achieves state-of-the-art performance in the automatic segmentation and identification of vertebral bodies.
We achieved outstanding results on two publicly available spine X-Ray datasets, with successful identification of 97.8% and 99.6% of annotated vertebrae.
arXiv Detail & Related papers (2024-11-01T02:51:21Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - B-Spine: Learning B-Spline Curve Representation for Robust and
Interpretable Spinal Curvature Estimation [50.208310028625284]
We propose B-Spine, a novel deep learning pipeline to learn B-spline curve representation of the spine.
We estimate the Cobb angles for spinal curvature estimation from low-quality X-ray images.
arXiv Detail & Related papers (2023-10-14T15:34:57Z) - MMA-Net: Multiple Morphology-Aware Network for Automated Cobb Angle
Measurement [6.8243631770391735]
We introduce a novel framework that improves Cobb angle measurement accuracy by integrating multiple spine morphology as attention information.
We evaluate our method on the AASCE challenge dataset and achieve superior performance with the SMAPE of 7.28% and the MAE of 3.18deg.
arXiv Detail & Related papers (2023-09-25T01:56:53Z) - Development of Machine learning algorithms to identify the Cobb angle in
adolescents with idiopathic scoliosis based on lumbosacral joint efforts
during gait (Case study) [1.1199585259018454]
The aim of this study is to identify the Cobb angle by developing an automated radiation-free model.
The lumbosacral joint efforts during gait as radiation-free data are capable to identify the Cobb angle.
arXiv Detail & Related papers (2023-01-29T23:58:16Z) - Direct Estimation of Spinal Cobb Angles by Structured Multi-Output
Regression [42.67503464183464]
The Cobb angle that quantitatively evaluates the spinal curvature plays an important role in the scoliosis diagnosis and treatment.
We formulate the estimation of the Cobb angles from spinal X-rays as a multi-output regression task.
Our method achieves the direct estimation of Cobb angles with high accuracy, which indicates its great potential in clinical use.
arXiv Detail & Related papers (2020-12-23T12:33:46Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
We propose a novel vertebra-focused landmark detection method.
Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset.
Results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images.
arXiv Detail & Related papers (2020-01-09T19:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.