Machine Learning Approaches on Crop Pattern Recognition a Comparative Analysis
- URL: http://arxiv.org/abs/2411.12667v1
- Date: Tue, 19 Nov 2024 17:19:20 GMT
- Title: Machine Learning Approaches on Crop Pattern Recognition a Comparative Analysis
- Authors: Kazi Hasibul Kabir, Md. Zahiruddin Aqib, Sharmin Sultana, Shamim Akhter,
- Abstract summary: Time series remote sensing data were used for the generation of the cropping pattern.
Classification algorithms are used to classify crop patterns and mapped agriculture land used.
In this paper, we are proposing Deep Neural Network (DNN) based classification to improve the performance of crop pattern recognition.
- Score: 0.0
- License:
- Abstract: Monitoring agricultural activities is important to ensure food security. Remote sensing plays a significant role for large-scale continuous monitoring of cultivation activities. Time series remote sensing data were used for the generation of the cropping pattern. Classification algorithms are used to classify crop patterns and mapped agriculture land used. Some conventional classification methods including support vector machine (SVM) and decision trees were applied for crop pattern recognition. However, in this paper, we are proposing Deep Neural Network (DNN) based classification to improve the performance of crop pattern recognition and make a comparative analysis with two (2) other machine learning approaches including Naive Bayes and Random Forest.
Related papers
- Automated Classification of Dry Bean Varieties Using XGBoost and SVM Models [0.0]
This paper presents a comparative study on the automated classification of seven different varieties of dry beans using machine learning models.
The XGBoost and SVM models achieved overall correct classification rates of 94.00% and 94.39%, respectively.
This study contributes to the growing body of work on precision agriculture, demonstrating that automated systems can significantly support seed quality control and crop yield optimization.
arXiv Detail & Related papers (2024-08-02T13:05:33Z) - Explainable AI in Grassland Monitoring: Enhancing Model Performance and
Domain Adaptability [0.6131022957085438]
Grasslands are known for their high biodiversity and ability to provide multiple ecosystem services.
Challenges in automating the identification of indicator plants are key obstacles to large-scale grassland monitoring.
This paper delves into the latter two challenges, with a specific focus on transfer learning and XAI approaches to grassland monitoring.
arXiv Detail & Related papers (2023-12-13T10:17:48Z) - Food Image Classification and Segmentation with Attention-based Multiple
Instance Learning [51.279800092581844]
The paper presents a weakly supervised methodology for training food image classification and semantic segmentation models.
The proposed methodology is based on a multiple instance learning approach in combination with an attention-based mechanism.
We conduct experiments on two meta-classes within the FoodSeg103 data set to verify the feasibility of the proposed approach.
arXiv Detail & Related papers (2023-08-22T13:59:47Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Exploring Self-Attention for Crop-type Classification Explainability [15.822486263693355]
We introduce a novel explainability framework that aims to shed a light on the essential crop disambiguation patterns learned by a state-of-the-art transformer encoder model.
We also present a sensitivity analysis approach to understand better the attention capability for revealing crop-specific phenological events.
arXiv Detail & Related papers (2022-10-24T12:36:40Z) - Learning crop type mapping from regional label proportions in
large-scale SAR and optical imagery [9.303156731091532]
This study proposes an online deep clustering method using crop label proportions as priors to learn a sample-level classifier.
We evaluate the method using two large datasets from two different agricultural regions in Brazil.
arXiv Detail & Related papers (2022-08-24T15:23:26Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
Inherent to today's operating environment is the practice of adversarial machine learning.
In this work, we examine the feasibility of unsupervised learning and graph-based methods for anomaly detection.
We incorporate a realistic adversarial training mechanism when training our supervised models to enable strong classification performance in adversarial environments.
arXiv Detail & Related papers (2021-05-14T10:05:10Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Improvement in Land Cover and Crop Classification based on Temporal
Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural
Network (R-CNN) [1.0312968200748118]
This paper develops a novel and optimal deep learning model for pixel-based land cover and crop classification (LC&CC) based on Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN)
Fifteen classes, including major agricultural crops, were considered in this study.
The overall accuracy achieved by our proposed Pixel R-CNN was 96.5%, which showed considerable improvements in comparison with existing mainstream methods.
arXiv Detail & Related papers (2020-04-27T15:39:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.