Enhancing Deep Learning-Driven Multi-Coil MRI Reconstruction via Self-Supervised Denoising
- URL: http://arxiv.org/abs/2411.12919v1
- Date: Tue, 19 Nov 2024 23:17:09 GMT
- Title: Enhancing Deep Learning-Driven Multi-Coil MRI Reconstruction via Self-Supervised Denoising
- Authors: Asad Aali, Marius Arvinte, Sidharth Kumar, Yamin I. Arefeen, Jonathan I. Tamir,
- Abstract summary: Self-supervised denoising is a pre-processing step for training deep learning (DL) based reconstruction methods.
We show that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods.
- Score: 4.6017417632210655
- License:
- Abstract: We examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising can enable the training of more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
Related papers
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
Real-world MRI acquisitions already contain inherent noise due to thermal fluctuations.
We propose a posterior sampling strategy with a novel NoIse Level Adaptive Data Consistency (Nila-DC) operation.
Our method surpasses the state-of-the-art MRI reconstruction methods, and is highly robust against various noise levels.
arXiv Detail & Related papers (2024-03-08T12:07:18Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMR perceives conditioning signals from the under-sampled MRI image slice and generates its corresponding fully-sampled MRI image slice.
We validate DiffCMR with cine reconstruction and T1/T2 mapping tasks on MICCAI 2023 Cardiac MRI Reconstruction Challenge dataset.
Results show that our method achieves state-of-the-art performance, exceeding previous methods by a significant margin.
arXiv Detail & Related papers (2023-12-08T06:11:21Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - DDM$^2$: Self-Supervised Diffusion MRI Denoising with Generative
Diffusion Models [0.3149883354098941]
We propose a self-supervised denoising method for MRI denoising using diffusion denoising generative models.
Our framework integrates statistic-based denoising theory into diffusion models and performs denoising through conditional generation.
arXiv Detail & Related papers (2023-02-06T18:56:39Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-supervised Deep Unrolled Reconstruction Using Regularization by
Denoising [9.489726334567171]
We propose a novel reconstruction method, named DURED-Net, that enables interpretable self-supervised learning for MR image reconstruction.
We aim to boost the reconstruction performance of Noise2Noise in MR reconstruction by adding an explicit prior that utilizes imaging physics.
Experiment results demonstrate that the proposed method requires a reduced amount of training data to achieve high reconstruction quality.
arXiv Detail & Related papers (2022-05-07T01:49:31Z) - Denoising of Three-Dimensional Fast Spin Echo Magnetic Resonance Images
of Knee Joints using Spatial-Variant Noise-Relevant Residual Learning of
Convolution Neural Network [0.0]
Two-dimensional (2D) fast spin echo (FSE) techniques play a central role in the clinical magnetic resonance imaging (MRI) of knee joints.
3D FSE provides high-isotropic-resolution magnetic resonance (MR) images of knee joints, but it has a reduced signal-to-noise ratio compared to 2D FSE.
Deep-learning denoising methods are a promising approach for denoising MR images, but they are often trained using synthetic noise.
arXiv Detail & Related papers (2022-04-21T03:45:11Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.