Efficient Masked AutoEncoder for Video Object Counting and A Large-Scale Benchmark
- URL: http://arxiv.org/abs/2411.13056v1
- Date: Wed, 20 Nov 2024 06:08:21 GMT
- Title: Efficient Masked AutoEncoder for Video Object Counting and A Large-Scale Benchmark
- Authors: Bing Cao, Quanhao Lu, Jiekang Feng, Pengfei Zhu, Qinghua Hu, Qilong Wang,
- Abstract summary: Dynamic imbalance of fore-background is a major challenge in video object counting.
We propose a density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework in this paper.
We also propose an efficient spatial adaptive masking derived from density maps to boost efficiency.
- Score: 52.339936954958034
- License:
- Abstract: The dynamic imbalance of the fore-background is a major challenge in video object counting, which is usually caused by the sparsity of foreground objects. This often leads to severe under- and over-prediction problems and has been less studied in existing works. To tackle this issue in video object counting, we propose a density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework in this paper. To effectively capture the dynamic variations across frames, we utilize an optical flow-based temporal collaborative fusion that aligns features to derive multi-frame density residuals. The counting accuracy of the current frame is boosted by harnessing the information from adjacent frames. More importantly, to empower the representation ability of dynamic foreground objects for intra-frame, we first take the density map as an auxiliary modality to perform $\mathtt{D}$ensity-$\mathtt{E}$mbedded $\mathtt{M}$asked m$\mathtt{O}$deling ($\mathtt{DEMO}$) for multimodal self-representation learning to regress density map. However, as $\mathtt{DEMO}$ contributes effective cross-modal regression guidance, it also brings in redundant background information and hard to focus on foreground regions. To handle this dilemma, we further propose an efficient spatial adaptive masking derived from density maps to boost efficiency. In addition, considering most existing datasets are limited to human-centric scenarios, we first propose a large video bird counting dataset $\textit{DroneBird}$, in natural scenarios for migratory bird protection. Extensive experiments on three crowd datasets and our $\textit{DroneBird}$ validate our superiority against the counterparts.
Related papers
- Linear Transformer Topological Masking with Graph Random Features [52.717865653036796]
We show how to parameterise topological masks as a learnable function of a weighted adjacency matrix.
Our efficient masking algorithms provide strong performance gains for tasks on image and point cloud data.
arXiv Detail & Related papers (2024-10-04T14:24:06Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
We develop a pipeline that utilizes a diffusion model to generate extensive training data.
We are the first to generate images conditioned on a location dot map with a diffusion model.
Our proposed counting loss for the diffusion model effectively minimizes the discrepancies between the location dot map and the crowd images generated.
arXiv Detail & Related papers (2024-01-25T07:28:22Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation.
The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects.
Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets.
arXiv Detail & Related papers (2023-06-07T17:57:45Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
We propose a novel Dyna-Depthformer framework, which predicts scene depth and 3D motion field jointly.
Our contributions are two-fold. First, we leverage multi-view correlation through a series of self- and cross-attention layers in order to obtain enhanced depth feature representation.
Second, we propose a warping-based Motion Network to estimate the motion field of dynamic objects without using semantic prior.
arXiv Detail & Related papers (2023-01-14T09:43:23Z) - IoU-Enhanced Attention for End-to-End Task Specific Object Detection [17.617133414432836]
R-CNN achieves promising results without densely tiled anchor boxes or grid points in the image.
Due to the sparse nature and the one-to-one relation between the query and its attending region, it heavily depends on the self attention.
This paper proposes to use IoU between different boxes as a prior for the value routing in self attention.
arXiv Detail & Related papers (2022-09-21T14:36:18Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved.
The proposed algorithm has the same complexity as the original $t$-SNE to embed new items, and a lower one when considering the embedding of a dataset sliced into sub-pieces.
arXiv Detail & Related papers (2021-09-22T06:45:37Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
We learn context- and depth-aware feature representation to solve the problem of monocular 3D object detection.
We show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.
arXiv Detail & Related papers (2021-03-30T16:20:24Z) - Single Object Tracking through a Fast and Effective Single-Multiple
Model Convolutional Neural Network [0.0]
Recent state-of-the-art (SOTA) approaches are proposed based on taking a matching network with a heavy structure to distinguish the target from other objects in the area.
In this article, a special architecture is proposed based on which in contrast to the previous approaches, it is possible to identify the object location in a single shot.
The presented tracker performs comparatively with the SOTA in challenging situations while having a super speed compared to them (up to $120 FPS$ on 1080ti)
arXiv Detail & Related papers (2021-03-28T11:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.