Domain Adaptive Unfolded Graph Neural Networks
- URL: http://arxiv.org/abs/2411.13137v1
- Date: Wed, 20 Nov 2024 09:05:36 GMT
- Title: Domain Adaptive Unfolded Graph Neural Networks
- Authors: Zepeng Zhang, Olga Fink,
- Abstract summary: Graph neural networks (GNNs) have made significant progress in numerous graph machine learning tasks.
In this work, we consider how to facilitate graph domain adaptation (GDA) with architectural enhancement.
We propose a simple yet effective strategy called cascaded propagation (CP) which is guaranteed to decrease the lower-level objective value.
- Score: 6.675805308519987
- License:
- Abstract: Over the last decade, graph neural networks (GNNs) have made significant progress in numerous graph machine learning tasks. In real-world applications, where domain shifts occur and labels are often unavailable for a new target domain, graph domain adaptation (GDA) approaches have been proposed to facilitate knowledge transfer from the source domain to the target domain. Previous efforts in tackling distribution shifts across domains have mainly focused on aligning the node embedding distributions generated by the GNNs in the source and target domains. However, as the core part of GDA approaches, the impact of the underlying GNN architecture has received limited attention. In this work, we explore this orthogonal direction, i.e., how to facilitate GDA with architectural enhancement. In particular, we consider a class of GNNs that are designed explicitly based on optimization problems, namely unfolded GNNs (UGNNs), whose training process can be represented as bi-level optimization. Empirical and theoretical analyses demonstrate that when transferring from the source domain to the target domain, the lower-level objective value generated by the UGNNs significantly increases, resulting in an increase in the upper-level objective as well. Motivated by this observation, we propose a simple yet effective strategy called cascaded propagation (CP), which is guaranteed to decrease the lower-level objective value. The CP strategy is widely applicable to general UGNNs, and we evaluate its efficacy with three representative UGNN architectures. Extensive experiments on five real-world datasets demonstrate that the UGNNs integrated with CP outperform state-of-the-art GDA baselines.
Related papers
- MLDGG: Meta-Learning for Domain Generalization on Graphs [9.872254367103057]
Domain generalization on graphs aims to develop models with robust generalization capabilities.
Our framework, MLDGG, endeavors to achieve adaptable generalization across diverse domains by integrating cross-multi-domain meta-learning.
Our empirical results demonstrate that MLDGG surpasses baseline methods, showcasing its effectiveness in three different distribution shift settings.
arXiv Detail & Related papers (2024-11-19T22:57:38Z) - GraphLoRA: Structure-Aware Contrastive Low-Rank Adaptation for Cross-Graph Transfer Learning [17.85404473268992]
Graph Neural Networks (GNNs) have demonstrated remarkable proficiency in handling a range of graph analytical tasks.
Despite their versatility, GNNs face significant challenges in transferability, limiting their utility in real-world applications.
We propose GraphLoRA, an effective and parameter-efficient method for transferring well-trained GNNs to diverse graph domains.
arXiv Detail & Related papers (2024-09-25T06:57:42Z) - Rethinking Propagation for Unsupervised Graph Domain Adaptation [17.443218657417454]
Unlabelled Graph Domain Adaptation (UGDA) aims to transfer knowledge from a labelled source graph to an unsupervised target graph.
We propose a simple yet effective approach called A2GNN for graph domain adaptation.
arXiv Detail & Related papers (2024-02-08T13:24:57Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions.
This paper studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network.
We show that our approach achieves superior performance over de facto baselines with more than 95.8% cost eduction in a fast convergence speed.
arXiv Detail & Related papers (2022-10-31T13:03:16Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Zero-shot Domain Adaptation of Heterogeneous Graphs via Knowledge
Transfer Networks [72.82524864001691]
heterogeneous graph neural networks (HGNNs) have shown superior performance as powerful representation learning techniques.
There is no direct way to learn using labels rooted at different node types.
In this work, we propose a novel domain adaptation method, Knowledge Transfer Networks for HGNNs (HGNN-KTN)
arXiv Detail & Related papers (2022-03-03T21:00:23Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.