Long-term Detection System for Six Kinds of Abnormal Behavior of the Elderly Living Alone
- URL: http://arxiv.org/abs/2411.13153v1
- Date: Wed, 20 Nov 2024 09:42:08 GMT
- Title: Long-term Detection System for Six Kinds of Abnormal Behavior of the Elderly Living Alone
- Authors: Kai Tanaka, Mineichi Kudo, Keigo Kimura, Atsuyoshi Nakamura,
- Abstract summary: We propose a simulator-based detection system for six typical anomalies: being semi-bedridden, being housebound, forgetting, wandering, fall while walking and fall while standing.
Our detection system can be customized for various room layout, sensor forgetting arrangement and resident's characteristics.
We propose a method that standardizes the processing of sensor data, and uses a simple detection approach.
- Score: 1.4061979259370274
- License:
- Abstract: The proportion of elderly people is increasing worldwide, particularly those living alone in Japan. As elderly people get older, their risks of physical disabilities and health issues increase. To automatically discover these issues at a low cost in daily life, sensor-based detection in a smart home is promising. As part of the effort towards early detection of abnormal behaviors, we propose a simulator-based detection systems for six typical anomalies: being semi-bedridden, being housebound, forgetting, wandering, fall while walking and fall while standing. Our detection system can be customized for various room layout, sensor arrangement and resident's characteristics by training detection classifiers using the simulator with the parameters fitted to individual cases. Considering that the six anomalies that our system detects have various occurrence durations, such as being housebound for weeks or lying still for seconds after a fall, the detection classifiers of our system produce anomaly labels depending on each anomaly's occurrence duration, e.g., housebound per day and falls per second. We propose a method that standardizes the processing of sensor data, and uses a simple detection approach. Although the validity depends on the realism of the simulation, numerical evaluations using sensor data that includes a variety of resident behavior patterns over nine years as test data show that (1) the methods for detecting wandering and falls are comparable to previous methods, and (2) the methods for detecting being semi-bedridden, being housebound, and forgetting achieve a sensitivity of over 0.9 with fewer than one false alarm every 50 days.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - GAD: A Real-time Gait Anomaly Detection System with Online Adaptive Learning [0.0]
Gait anomaly detection is a task that involves detecting deviations from a person's normal gait pattern.
This paper introduces GAD, a real-time gait anomaly detection system.
arXiv Detail & Related papers (2024-05-04T22:43:09Z) - Sensor Data Simulation for Anomaly Detection of the Elderly Living Alone [0.49157446832511503]
There is a growing demand for sensor-based detection of anomalous behaviors.
There is a problem of lack of sufficient real data for developing detection algorithms.
We propose a novel sensor data simulator that can model these factors in generation of sensor data.
arXiv Detail & Related papers (2023-12-28T06:38:52Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Human Fall Detection- Multimodality Approach [2.7215474244966296]
We use wrist sensor with acclerometer data keeping labels to binary classification, namely fall and no fall from the data set.
The experimental results shows that using only wrist data as compared to multi sensor for binary classification did not impact the model prediction performance for fall detection.
arXiv Detail & Related papers (2023-02-01T04:05:14Z) - Privacy-Protecting Behaviours of Risk Detection in People with Dementia
using Videos [4.264550333891292]
We present two novel privacy-protecting video-based anomaly detection approaches to detect behaviours of risks in people with dementia.
We either extracted body pose information as skeletons and use semantic segmentation masks to replace multiple humans in the scene with their semantic boundaries.
This is one of the first studies to incorporate privacy for the detection of behaviours of risks in people with dementia.
arXiv Detail & Related papers (2022-12-20T22:55:46Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - An Intelligent Non-Invasive Real Time Human Activity Recognition System
for Next-Generation Healthcare [9.793913891417912]
Human motion can be used to provide remote healthcare solutions for vulnerable people.
At present wearable devices can provide real time monitoring by deploying equipment on a person's body.
This paper demonstrates how human motions can be detected in quasi-real-time scenario using a non-invasive method.
arXiv Detail & Related papers (2020-08-06T10:51:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.