A Multi-Server Information-Sharing Environment for Cross-Party Collaboration on A Private Cloud
- URL: http://arxiv.org/abs/2411.13580v1
- Date: Fri, 15 Nov 2024 14:37:01 GMT
- Title: A Multi-Server Information-Sharing Environment for Cross-Party Collaboration on A Private Cloud
- Authors: Jianping Zhang, Qiang Liu, Zhenzhong Hu, Jiarui Lin, Fangqiang Yu,
- Abstract summary: This study proposes a multi-server information-sharing approach on a private cloud to address the issues of interoperability and cross-party collaboration.
The proposed approach is feasible for maintaining the ownership and privacy of the data while supporting cross-party data sharing and collaboration.
- Score: 7.2185245541022045
- License:
- Abstract: Interoperability remains the key problem in multi-discipline collaboration based on building information modeling (BIM). Although various methods have been proposed to solve the technical issues of interoperability, such as data sharing and data consistency; organizational issues, including data ownership and data privacy, remain unresolved to date. These organizational issues prevent different stakeholders from sharing their data due to concerns regarding losing control of the data. This study proposes a multi-server information-sharing approach on a private cloud after analyzing the requirements for cross-party collaboration to address the aforementioned issues and prepare for massive data handling in the near future. This approach adopts a global controller to track the location, ownership and privacy of the data, which are stored in different servers that are controlled by different parties. Furthermore, data consistency conventions, parallel sub-model extraction, and sub-model integration with model verification are investigated in depth to support information sharing in a distributed environment and to maintain data consistency. Thus, with this approach, the ownership and privacy of the data can be controlled by its owner while still enabling certain required data to be shared with other parties. Application of the multi-server approach for information interoperability and cross-party collaboration is illustrated using a real construction project of an airport terminal. Validation shows that the proposed approach is feasible for maintaining the ownership and privacy of the data while supporting cross-party data sharing and collaboration at the same time, thus avoiding possible legal problems regarding data copyrights or other legal issues.
Related papers
- Towards Personal Data Sharing Autonomy:A Task-driven Data Capsule Sharing System [5.076862984714449]
We introduce a novel task-driven personal data sharing system based on the data capsule paradigm realizing personal data sharing autonomy.
Specifically, we present a tamper-resistant data capsule encapsulation method, where the data capsule is the minimal unit for independent and secure personal data storage and sharing.
arXiv Detail & Related papers (2024-09-27T05:13:33Z) - CaPS: Collaborative and Private Synthetic Data Generation from Distributed Sources [5.898893619901382]
We propose a framework for the collaborative and private generation of synthetic data from distributed data holders.
We replace the trusted aggregator with secure multi-party computation protocols and output privacy via differential privacy (DP)
We demonstrate the applicability and scalability of our approach for the state-of-the-art select-measure-generate algorithms MWEM+PGM and AIM.
arXiv Detail & Related papers (2024-02-13T17:26:32Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Collaborative Mean Estimation over Intermittently Connected Networks
with Peer-To-Peer Privacy [86.61829236732744]
This work considers the problem of Distributed Mean Estimation (DME) over networks with intermittent connectivity.
The goal is to learn a global statistic over the data samples localized across distributed nodes with the help of a central server.
We study the tradeoff between collaborative relaying and privacy leakage due to the additional data sharing among nodes.
arXiv Detail & Related papers (2023-02-28T19:17:03Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Efficient User-Centric Privacy-Friendly and Flexible Wearable Data Aggregation and Sharing [9.532148238768213]
Wearable devices can offer services to individuals and the public.
Wearable data collected by cloud providers may pose privacy risks.
We propose a novel, efficient, user-centric, privacy-friendly, and flexible data aggregation and sharing scheme, named SAMA.
arXiv Detail & Related papers (2022-03-01T13:51:52Z) - Mitigating Leakage from Data Dependent Communications in Decentralized
Computing using Differential Privacy [1.911678487931003]
We propose a general execution model to control the data-dependence of communications in user-side decentralized computations.
Our formal privacy guarantees leverage and extend recent results on privacy amplification by shuffling.
arXiv Detail & Related papers (2021-12-23T08:30:17Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Data Sharing Markets [95.13209326119153]
We study a setup where each agent can be both buyer and seller of data.
We consider two cases: bilateral data exchange (trading data with data) and unilateral data exchange (trading data with money)
arXiv Detail & Related papers (2021-07-19T06:00:34Z) - BeeTrace: A Unified Platform for Secure Contact Tracing that Breaks Data
Silos [73.84437456144994]
Contact tracing is an important method to control the spread of an infectious disease such as COVID-19.
Current solutions do not utilize the huge volume of data stored in business databases and individual digital devices.
We propose BeeTrace, a unified platform that breaks data silos and deploys state-of-the-art cryptographic protocols to guarantee privacy goals.
arXiv Detail & Related papers (2020-07-05T10:33:45Z) - A Critical Overview of Privacy-Preserving Approaches for Collaborative
Forecasting [0.0]
Cooperation between different data owners may lead to an improvement in forecast quality.
Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data.
This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy.
arXiv Detail & Related papers (2020-04-20T20:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.