Real-Time Scattering in Ising Field Theory using Matrix Product States
- URL: http://arxiv.org/abs/2411.13645v1
- Date: Wed, 20 Nov 2024 19:00:01 GMT
- Title: Real-Time Scattering in Ising Field Theory using Matrix Product States
- Authors: Raghav G. Jha, Ashley Milsted, Dominik Neuenfeld, John Preskill, Pedro Vieira,
- Abstract summary: We study scattering in Ising Field Theory using matrix product states and the time-dependent variational principle.
We find that the high energy behavior of the two-to-two particle scattering probability in IFT is consistent with a conjecture of Zamolodchikov.
- Score: 0.17476232824732776
- License:
- Abstract: We study scattering in Ising Field Theory (IFT) using matrix product states and the time-dependent variational principle. IFT is a one-parameter family of strongly coupled non-integrable quantum field theories in 1+1 dimensions, interpolating between massive free fermion theory and Zamolodchikov's integrable massive $E_8$ theory. Particles in IFT may scatter either elastically or inelastically. In the post-collision wavefunction, particle tracks from all final-state channels occur in superposition; processes of interest can be isolated by projecting the wavefunction onto definite particle sectors, or by evaluating energy density correlation functions. Using numerical simulations we determine the time delay of elastic scattering and the probability of inelastic particle production as a function of collision energy. We also study the mass and width of the lightest resonance near the $E_8$ point in detail. Close to both the free fermion and $E_8$ theories, our results for both elastic and inelastic scattering are in good agreement with expectations from form-factor perturbation theory. Using numerical computations to go beyond the regime accessible by perturbation theory, we find that the high energy behavior of the two-to-two particle scattering probability in IFT is consistent with a conjecture of Zamolodchikov. Our results demonstrate the efficacy of tensor-network methods for simulating the real-time dynamics of strongly coupled quantum field theories in 1+1 dimensions.
Related papers
- Fourier Neural Differential Equations for learning Quantum Field
Theories [57.11316818360655]
A Quantum Field Theory is defined by its interaction Hamiltonian, and linked to experimental data by the scattering matrix.
In this paper, NDE models are used to learn theory, Scalar-Yukawa theory and Scalar Quantum Electrodynamics.
The interaction Hamiltonian of a theory can be extracted from network parameters.
arXiv Detail & Related papers (2023-11-28T22:11:15Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
We introduce a novel unified architecture, termed latent variation models, which combines the latent learning of cutting-edge generative art approaches with an end-to-end variational framework.
Our unified approach achieves a distribution-free distance to the truth of over 20 times less than non-latent state-of-the-art baseline.
arXiv Detail & Related papers (2023-05-17T17:43:10Z) - Non-Hermitian fermions with effective mass [0.0]
In seeking a Schr"odinger-like theory with PT symmetry is appropriate to assume a complex potential.
In seeking a Schr"odinger-like theory with PT symmetry is appropriate to assume a complex potential.
arXiv Detail & Related papers (2023-02-09T15:45:01Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Collisions of false-vacuum bubble walls in a quantum spin chain [5.191136746295222]
We simulate, using nonperturbative methods, the real-time dynamics of small bubbles of "false vacuum" in a quantum spin chain near criticality.
We consider bubbles whose walls are kink and antikink quasiparticle excitations, so that wall collisions are kink-antikink scattering events.
arXiv Detail & Related papers (2020-12-14T04:01:56Z) - Scattering of mesons in quantum simulators [0.0]
Cold-atom platforms stand as promising candidates to realize quantum simulations of non-perturbative phenomena in gauge theories.
We demonstrate that present-day quantum simulators can imitate linear particle accelerators, giving access to S-matrix measurements of elastic and inelastic meson collisions.
arXiv Detail & Related papers (2020-11-20T19:00:04Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.