Extending Video Masked Autoencoders to 128 frames
- URL: http://arxiv.org/abs/2411.13683v1
- Date: Wed, 20 Nov 2024 20:00:38 GMT
- Title: Extending Video Masked Autoencoders to 128 frames
- Authors: Nitesh Bharadwaj Gundavarapu, Luke Friedman, Raghav Goyal, Chaitra Hegde, Eirikur Agustsson, Sagar M. Waghmare, Mikhail Sirotenko, Ming-Hsuan Yang, Tobias Weyand, Boqing Gong, Leonid Sigal,
- Abstract summary: Video understanding has witnessed significant progress with recent video foundation models demonstrating strong performance owing to self-supervised pre-training objectives; Masked Autoencoders (MAE) being the design of choice.
However, the majority of prior works that leverage MAE pre-training have focused on relatively short video representations (16 / 32 frames in length) largely due to hardware memory and compute limitations that scale poorly with video length due to the dense memory-intensive self-attention decoding.
We propose an effective strategy for prioritizing tokens which allows training on longer video sequences (128 frames) and gets better performance than, more typical, random
- Score: 75.01251612160829
- License:
- Abstract: Video understanding has witnessed significant progress with recent video foundation models demonstrating strong performance owing to self-supervised pre-training objectives; Masked Autoencoders (MAE) being the design of choice. Nevertheless, the majority of prior works that leverage MAE pre-training have focused on relatively short video representations (16 / 32 frames in length) largely due to hardware memory and compute limitations that scale poorly with video length due to the dense memory-intensive self-attention decoding. One natural strategy to address these challenges is to subsample tokens to reconstruct during decoding (or decoder masking). In this work, we propose an effective strategy for prioritizing tokens which allows training on longer video sequences (128 frames) and gets better performance than, more typical, random and uniform masking strategies. The core of our approach is an adaptive decoder masking strategy that prioritizes the most important tokens and uses quantized tokens as reconstruction objectives. Our adaptive strategy leverages a powerful MAGVIT-based tokenizer that jointly learns the tokens and their priority. We validate our design choices through exhaustive ablations and observe improved performance of the resulting long-video (128 frames) encoders over short-video (32 frames) counterparts. With our long-video masked autoencoder (LVMAE) strategy, we surpass state-of-the-art on Diving48 by 3.9 points and EPIC-Kitchens-100 verb classification by 2.5 points while relying on a simple core architecture and video-only pre-training (unlike some of the prior works that require millions of labeled video-text pairs or specialized encoders).
Related papers
- Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction [93.69757398746017]
CoordTok is a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos.
CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates.
arXiv Detail & Related papers (2024-11-22T06:50:44Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.
We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking [57.552798046137646]
Video masked autoencoder (VideoMAE) is a scalable and general self-supervised pre-trainer for building video foundation models.
We successfully train a video ViT model with a billion parameters, which achieves a new state-of-the-art performance.
arXiv Detail & Related papers (2023-03-29T14:28:41Z) - SMAUG: Sparse Masked Autoencoder for Efficient Video-Language
Pre-training [25.256564703540953]
We develop SMAUG, an efficient pre-training framework for video-language models.
Masking strategy considers both visual and textual modalities, providing a better cross-modal alignment.
Space-time token sparsification module selects only "important" spatial regions and temporal frames for pre-training.
arXiv Detail & Related papers (2022-11-21T13:34:34Z) - EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens [57.354304637367555]
We present EVEREST, a surprisingly efficient MVA approach for video representation learning.
It finds tokens containing rich motion features and discards uninformative ones during both pre-training and fine-tuning.
Our method significantly reduces the computation and memory requirements of MVA.
arXiv Detail & Related papers (2022-11-19T09:57:01Z) - MAE-AST: Masked Autoencoding Audio Spectrogram Transformer [11.814012909512307]
We propose a simple yet powerful improvement over the recent Self-Supervised Audio Spectrogram Transformer (SSAST) model for speech and audio classification.
We leverage the insight that the SSAST uses a very high masking ratio (75%) during pretraining, meaning that the vast majority of self-attention compute is performed on mask tokens.
We find that MAE-like pretraining can provide a 3x speedup and 2x memory usage reduction over the vanilla SSAST.
arXiv Detail & Related papers (2022-03-30T22:06:13Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
We propose a traditional-neural mixed coding framework that takes advantage of both traditional codecs and neural networks (NNs)
The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved.
We build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach.
arXiv Detail & Related papers (2022-02-06T16:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.