AI-Driven Agents with Prompts Designed for High Agreeableness Increase the Likelihood of Being Mistaken for a Human in the Turing Test
- URL: http://arxiv.org/abs/2411.13749v1
- Date: Wed, 20 Nov 2024 23:12:49 GMT
- Title: AI-Driven Agents with Prompts Designed for High Agreeableness Increase the Likelihood of Being Mistaken for a Human in the Turing Test
- Authors: U. León-Domínguez, E. D. Flores-Flores, A. J. García-Jasso, M. K. Gómez-Cuellar, D. Torres-Sánchez, A. Basora-Marimon,
- Abstract summary: GPT agents with varying levels of agreeableness were tested in a Turing Test.
All exceeded a 50% confusion rate, with the highly agreeable AI agent surpassing 60%.
This agent was also recognized as exhibiting the most human-like traits.
- Score: 0.0
- License:
- Abstract: Large Language Models based on transformer algorithms have revolutionized Artificial Intelligence by enabling verbal interaction with machines akin to human conversation. These AI agents have surpassed the Turing Test, achieving confusion rates up to 50%. However, challenges persist, especially with the advent of robots and the need to humanize machines for improved Human-AI collaboration. In this experiment, three GPT agents with varying levels of agreeableness (disagreeable, neutral, agreeable) based on the Big Five Inventory were tested in a Turing Test. All exceeded a 50% confusion rate, with the highly agreeable AI agent surpassing 60%. This agent was also recognized as exhibiting the most human-like traits. Various explanations in the literature address why these GPT agents were perceived as human, including psychological frameworks for understanding anthropomorphism. These findings highlight the importance of personality engineering as an emerging discipline in artificial intelligence, calling for collaboration with psychology to develop ergonomic psychological models that enhance system adaptability in collaborative activities.
Related papers
- Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
This study compares the effects of classic vs. partner-aware explanations on human behavior and performance during a learning-by-doing task.
Results indicated that partner-aware explanations influenced participants differently based on the type of artificial agents involved.
arXiv Detail & Related papers (2024-11-15T13:22:04Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AI systems need to be explainable to the humans in the loop.
We will discuss how the AI agent can use mental models to either conform to human expectations, or change those expectations through explanatory communication.
While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception.
arXiv Detail & Related papers (2024-05-19T22:22:21Z) - Dobby: A Conversational Service Robot Driven by GPT-4 [22.701223191699412]
This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for service tasks.
The agent is derived from a large language model, which has learned from a vast corpus of general knowledge.
In addition to generating dialogue, this agent can interface with the physical world by invoking commands on the robot.
arXiv Detail & Related papers (2023-10-10T04:34:00Z) - Capturing Humans' Mental Models of AI: An Item Response Theory Approach [12.129622383429597]
We show that people expect AI agents' performance to be significantly better on average than the performance of other humans.
Our results indicate that people expect AI agents' performance to be significantly better on average than the performance of other humans.
arXiv Detail & Related papers (2023-05-15T23:17:26Z) - Can Machines Imitate Humans? Integrative Turing Tests for Vision and Language Demonstrate a Narrowing Gap [45.6806234490428]
We benchmark current AIs in their abilities to imitate humans in three language tasks and three vision tasks.
Experiments involved 549 human agents plus 26 AI agents for dataset creation, and 1,126 human judges plus 10 AI judges.
Results reveal that current AIs are not far from being able to impersonate humans in complex language and vision challenges.
arXiv Detail & Related papers (2022-11-23T16:16:52Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
There is no clear definition of what is meant by Human Centered Artificial Intelligence.
This paper introduces the term HCAI agent to refer to any physical or software computational agent equipped with AI components.
We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI.
arXiv Detail & Related papers (2021-12-29T09:58:59Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.