InstCache: A Predictive Cache for LLM Serving
- URL: http://arxiv.org/abs/2411.13820v1
- Date: Thu, 21 Nov 2024 03:52:41 GMT
- Title: InstCache: A Predictive Cache for LLM Serving
- Authors: Longwei Zou, Tingfeng Liu, Kai Chen, Jiangang Kong, Yangdong Deng,
- Abstract summary: We propose to predict user-instructions by an instruction-aligned LLM and store them in a predictive cache, so-called InstCache.
Experimental results show that InstCache can achieve up to 51.34% hit rate on LMSys dataset, which corresponds to a 2x speedup, at a memory cost of only 4.5GB.
- Score: 9.878166964839512
- License:
- Abstract: Large language models are revolutionizing every aspect of human life. However, the unprecedented power comes at the cost of significant computing intensity, suggesting long latency and large energy footprint. Key-Value Cache and Semantic Cache have been proposed as a solution to the above problem, but both suffer from limited scalability due to significant memory cost for each token or instruction embeddings. Motivated by the observations that most instructions are short, repetitive and predictable by LLMs, we propose to predict user-instructions by an instruction-aligned LLM and store them in a predictive cache, so-called InstCache. We introduce an instruction pre-population algorithm based on the negative log likelihood of instructions, determining the cache size with regard to the hit rate. The proposed InstCache is efficiently implemented as a hash table with minimal lookup latency for deployment. Experimental results show that InstCache can achieve up to 51.34% hit rate on LMSys dataset, which corresponds to a 2x speedup, at a memory cost of only 4.5GB.
Related papers
- Compute Or Load KV Cache? Why Not Both? [6.982874528357836]
Cake is a novel KV cache loader, which employs a bidirectional parallelized KV cache generation strategy.
It simultaneously and dynamically loads saved KV cache from prefix cache locations and computes KV cache on local GPU.
It offers up to 68.1% Time To First Token (TTFT) reduction compare with compute-only method and 94.6% TTFT reduction compare with I/O-only method.
arXiv Detail & Related papers (2024-10-04T01:11:09Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
We introduce Elastic Cache, a novel strategy for efficient deployment of instruction-following large vision-language models.
We propose an importance-driven cache merging strategy to prune redundancy caches.
For instruction encoding, we utilize the frequency to evaluate the importance of caches.
Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation.
arXiv Detail & Related papers (2024-07-25T15:29:05Z) - PQCache: Product Quantization-based KVCache for Long Context LLM Inference [27.523568511043273]
Key-Value Cache (KVCache) is a crucial component in Large Language Models (LLMs)
Current methods selectively determine suitable keys and values for self-attention in LLMs to address the issue.
We propose PQCache, which employs Product Quantization (PQ) to manage KVCache, maintaining model quality while ensuring low serving latency.
arXiv Detail & Related papers (2024-07-01T13:05:42Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
We introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens.
Our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens.
arXiv Detail & Related papers (2024-06-24T03:59:17Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
Key-Value ( KV) cache stores key-value states of previously generated tokens.
The size of the KV cache grows linearly with sequence length, posing challenges for applications requiring long context input and extensive sequence generation.
We present a simple yet effective approach, called MiniCache, to compress the KV cache across layers from a novel depth perspective.
arXiv Detail & Related papers (2024-05-23T09:43:52Z) - Efficient LLM Inference with Kcache [3.945956673130761]
Large Language Models (LLMs) have had a profound impact on AI applications.
KV Cache technology is one of the most widely used techniques in the industry.
We propose a novel KCache technique to alleviate the memory bottleneck issue during the LLMs inference process.
arXiv Detail & Related papers (2024-04-28T03:11:42Z) - MeanCache: User-Centric Semantic Cache for Large Language Model Based Web Services [8.350378532274405]
Caching is a natural solution to reduce inference costs on repeated queries.
This paper introduces MeanCache, a user-centric semantic cache for LLM-based services.
MeanCache identifies semantically similar queries to determine cache hit or miss.
arXiv Detail & Related papers (2024-03-05T06:23:50Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
We focus on a memory bottleneck imposed by the key-value ( KV) cache.
Existing KV cache methods approach this problem by pruning or evicting large swaths of relatively less important KV pairs.
We propose LESS, a simple integration of a constant sized cache with eviction-based cache methods.
arXiv Detail & Related papers (2024-02-14T18:54:56Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
We propose a novel caching paradigm, that we named approximate-key caching.
While approximate cache hits alleviate DL inference workload and increase the system throughput, they however introduce an approximation error.
We analytically model our caching system performance for classic LRU and ideal caches, we perform a trace-driven evaluation of the expected performance, and we compare the benefits of our proposed approach with the state-of-the-art similarity caching.
arXiv Detail & Related papers (2021-12-13T13:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.