CLFace: A Scalable and Resource-Efficient Continual Learning Framework for Lifelong Face Recognition
- URL: http://arxiv.org/abs/2411.13886v1
- Date: Thu, 21 Nov 2024 06:55:43 GMT
- Title: CLFace: A Scalable and Resource-Efficient Continual Learning Framework for Lifelong Face Recognition
- Authors: Md Mahedi Hasan, Shoaib Meraj Sami, Nasser Nasrabadi,
- Abstract summary: CLFace is a continual learning framework designed to preserve and incrementally extend the learned knowledge.
It eliminates the classification layer, resulting in a resource-efficient FR model that remains fixed throughout lifelong learning.
It incorporates a geometry-preserving distillation scheme to maintain the orientation of the teacher model's feature embedding.
- Score: 0.0
- License:
- Abstract: An important aspect of deploying face recognition (FR) algorithms in real-world applications is their ability to learn new face identities from a continuous data stream. However, the online training of existing deep neural network-based FR algorithms, which are pre-trained offline on large-scale stationary datasets, encounter two major challenges: (I) catastrophic forgetting of previously learned identities, and (II) the need to store past data for complete retraining from scratch, leading to significant storage constraints and privacy concerns. In this paper, we introduce CLFace, a continual learning framework designed to preserve and incrementally extend the learned knowledge. CLFace eliminates the classification layer, resulting in a resource-efficient FR model that remains fixed throughout lifelong learning and provides label-free supervision to a student model, making it suitable for open-set face recognition during incremental steps. We introduce an objective function that employs feature-level distillation to reduce drift between feature maps of the student and teacher models across multiple stages. Additionally, it incorporates a geometry-preserving distillation scheme to maintain the orientation of the teacher model's feature embedding. Furthermore, a contrastive knowledge distillation is incorporated to continually enhance the discriminative power of the feature representation by matching similarities between new identities. Experiments on several benchmark FR datasets demonstrate that CLFace outperforms baseline approaches and state-of-the-art methods on unseen identities using both in-domain and out-of-domain datasets.
Related papers
- Federated Learning for Face Recognition via Intra-subject Self-supervised Learning [3.9899461012388504]
We propose FedFS (Federated Learning for personalized Face recognition via intra-subject Self-supervised learning framework) to train personalized face recognition models without imposing subjects.
FedFS comprises two crucial components that leverage aggregated features of the local and global models to cooperate with representations of an off-the-shelf model.
We conduct comprehensive experiments on the DigiFace-1M and VGGFace datasets, demonstrating superior performance compared to previous methods.
arXiv Detail & Related papers (2024-07-23T08:43:42Z) - Generative Model-based Feature Knowledge Distillation for Action
Recognition [11.31068233536815]
Our paper introduces an innovative knowledge distillation framework, with the generative model for training a lightweight student model.
The efficacy of our approach is demonstrated through comprehensive experiments on diverse popular datasets.
arXiv Detail & Related papers (2023-12-14T03:55:29Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Continual Facial Expression Recognition: A Benchmark [3.181579197770883]
This work presents the Continual Facial Expression Recognition (ConFER) benchmark that evaluates popular CL techniques on FER tasks.
It presents a comparative analysis of several CL-based approaches on popular FER datasets such as CK+, RAF-DB, and AffectNet.
CL techniques, under different learning settings, are shown to achieve state-of-the-art (SOTA) performance across several datasets.
arXiv Detail & Related papers (2023-05-10T20:35:38Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
In this paper, we exploit Pose Estimation as an auxiliary learning task to assist the VI-ReID task in an end-to-end framework.
By jointly training these two tasks in a mutually beneficial manner, our model learns higher quality modality-shared and ID-related features.
Experimental results on two benchmark VI-ReID datasets show that the proposed method consistently improves state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2022-01-11T09:44:00Z) - Federated Learning for Face Recognition with Gradient Correction [52.896286647898386]
In this work, we introduce a framework, FedGC, to tackle federated learning for face recognition.
We show that FedGC constitutes a valid loss function similar to standard softmax.
arXiv Detail & Related papers (2021-12-14T09:19:29Z) - Continual Semantic Segmentation via Repulsion-Attraction of Sparse and
Disentangled Latent Representations [18.655840060559168]
This paper focuses on class incremental continual learning in semantic segmentation.
New categories are made available over time while previous training data is not retained.
The proposed continual learning scheme shapes the latent space to reduce forgetting whilst improving the recognition of novel classes.
arXiv Detail & Related papers (2021-03-10T21:02:05Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.