REFOL: Resource-Efficient Federated Online Learning for Traffic Flow Forecasting
- URL: http://arxiv.org/abs/2411.14046v1
- Date: Thu, 21 Nov 2024 11:50:17 GMT
- Title: REFOL: Resource-Efficient Federated Online Learning for Traffic Flow Forecasting
- Authors: Qingxiang Liu, Sheng Sun, Yuxuan Liang, Xiaolong Xu, Min Liu, Muhammad Bilal, Yuwei Wang, Xujing Li, Yu Zheng,
- Abstract summary: Multiple federated learning (FL) methods are proposed for traffic flow forecasting (TFF) to avoid heavy-transmission and privacy-leaking concerns.
Online learning can detect concept drift during model training, thus more applicable to TFF.
We propose a novel method named Resource-Efficient Federated Online Learning (REFOL) for TFF, which guarantees prediction performance in a communication-lightweight and computation-efficient way.
- Score: 22.118392944492964
- License:
- Abstract: Multiple federated learning (FL) methods are proposed for traffic flow forecasting (TFF) to avoid heavy-transmission and privacy-leaking concerns resulting from the disclosure of raw data in centralized methods. However, these FL methods adopt offline learning which may yield subpar performance, when concept drift occurs, i.e., distributions of historical and future data vary. Online learning can detect concept drift during model training, thus more applicable to TFF. Nevertheless, the existing federated online learning method for TFF fails to efficiently solve the concept drift problem and causes tremendous computing and communication overhead. Therefore, we propose a novel method named Resource-Efficient Federated Online Learning (REFOL) for TFF, which guarantees prediction performance in a communication-lightweight and computation-efficient way. Specifically, we design a data-driven client participation mechanism to detect the occurrence of concept drift and determine clients' participation necessity. Subsequently, we propose an adaptive online optimization strategy, which guarantees prediction performance and meanwhile avoids meaningless model updates. Then, a graph convolution-based model aggregation mechanism is designed, aiming to assess participants' contribution based on spatial correlation without importing extra communication and computing consumption on clients. Finally, we conduct extensive experiments on real-world datasets to demonstrate the superiority of REFOL in terms of prediction improvement and resource economization.
Related papers
- Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
Federated learning (FL) enables edge devices to collaboratively train a machine learning model without sharing their raw data.
However, deploying FL over mobile edge networks with constrained resources such as power, bandwidth, and suffers from high training latency and low model accuracy.
This paper investigates the optimal client scheduling and resource allocation for FL over mobile edge networks under resource constraints and uncertainty.
arXiv Detail & Related papers (2024-09-29T01:56:45Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
We present a novel deep-learning method called Federated Learning and Asynchronous Graph Convolutional Networks (FLAGCN)
Our framework incorporates the principles of asynchronous graph convolutional networks with federated learning to enhance accuracy and efficiency of real-time traffic flow prediction.
arXiv Detail & Related papers (2024-01-05T09:36:42Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Online Spatio-Temporal Correlation-Based Federated Learning for Traffic
Flow Forecasting [11.253575460227127]
In this paper, we perform the first study of forecasting traffic flow adopting Online Learning (OL) manner in FL framework.
We then propose a novel prediction method named Online Spatio-Temporal Correlation-based Federated Learning (FedOSTC) to guarantee performance gains regardless of traffic fluctuation.
arXiv Detail & Related papers (2023-02-17T02:37:36Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.