Out-Of-Distribution Detection with Diversification (Provably)
- URL: http://arxiv.org/abs/2411.14049v1
- Date: Thu, 21 Nov 2024 11:56:32 GMT
- Title: Out-Of-Distribution Detection with Diversification (Provably)
- Authors: Haiyun Yao, Zongbo Han, Huazhu Fu, Xi Peng, Qinghua Hu, Changqing Zhang,
- Abstract summary: Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment of machine learning models.
Recent advancements focus on utilizing easily accessible auxiliary outliers (e.g., data from the web or other datasets) in training.
We propose a theoretical guarantee, termed Diversity-induced Mixup for OOD detection (diverseMix), which enhances the diversity of auxiliary outlier set for training.
- Score: 75.44158116183483
- License:
- Abstract: Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment of machine learning models. Recent advancements focus on utilizing easily accessible auxiliary outliers (e.g., data from the web or other datasets) in training. However, we experimentally reveal that these methods still struggle to generalize their detection capabilities to unknown OOD data, due to the limited diversity of the auxiliary outliers collected. Therefore, we thoroughly examine this problem from the generalization perspective and demonstrate that a more diverse set of auxiliary outliers is essential for enhancing the detection capabilities. However, in practice, it is difficult and costly to collect sufficiently diverse auxiliary outlier data. Therefore, we propose a simple yet practical approach with a theoretical guarantee, termed Diversity-induced Mixup for OOD detection (diverseMix), which enhances the diversity of auxiliary outlier set for training in an efficient way. Extensive experiments show that diverseMix achieves superior performance on commonly used and recent challenging large-scale benchmarks, which further confirm the importance of the diversity of auxiliary outliers.
Related papers
- Robust Offline Imitation Learning from Diverse Auxiliary Data [33.14745744587572]
offline imitation learning enables learning a policy solely from a set of expert demonstrations.
Recent works incorporate large numbers of auxiliary demonstrations alongside the expert data.
We propose Robust Offline Imitation from Diverse Auxiliary Data (ROIDA)
arXiv Detail & Related papers (2024-10-04T17:30:54Z) - Leveraging Mixture of Experts for Improved Speech Deepfake Detection [53.69740463004446]
Speech deepfakes pose a significant threat to personal security and content authenticity.
We introduce a novel approach for enhancing speech deepfake detection performance using a Mixture of Experts architecture.
arXiv Detail & Related papers (2024-09-24T13:24:03Z) - The Curse of Diversity in Ensemble-Based Exploration [7.209197316045156]
Training a diverse ensemble of data-sharing agents can significantly impair the performance of the individual ensemble members.
We name this phenomenon the curse of diversity.
We demonstrate the potential of representation learning to counteract the curse of diversity.
arXiv Detail & Related papers (2024-05-07T14:14:50Z) - Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles [95.49699178874683]
We propose DiffDiv, an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs)
We show that DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features.
We show that DPM-guided diversification is sufficient to remove dependence on shortcut cues, without a need for additional supervised signals.
arXiv Detail & Related papers (2023-11-23T15:47:33Z) - Diversified Outlier Exposure for Out-of-Distribution Detection via
Informative Extrapolation [110.34982764201689]
Out-of-distribution (OOD) detection is important for deploying reliable machine learning models on real-world applications.
Recent advances in outlier exposure have shown promising results on OOD detection via fine-tuning model with informatively sampled auxiliary outliers.
We propose a novel framework, namely, Diversified Outlier Exposure (DivOE), for effective OOD detection via informative extrapolation based on the given auxiliary outliers.
arXiv Detail & Related papers (2023-10-21T07:16:09Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Improving robustness and calibration in ensembles with diversity
regularization [1.069533806668766]
We introduce a new diversity regularizer for classification tasks that uses out-of-distribution samples.
We show that regularizing diversity can have a significant impact on calibration and robustness, as well as out-of-distribution detection.
arXiv Detail & Related papers (2022-01-26T12:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.