MetaCropFollow: Few-Shot Adaptation with Meta-Learning for Under-Canopy Navigation
- URL: http://arxiv.org/abs/2411.14092v1
- Date: Thu, 21 Nov 2024 12:58:09 GMT
- Title: MetaCropFollow: Few-Shot Adaptation with Meta-Learning for Under-Canopy Navigation
- Authors: Thomas Woehrle, Arun N. Sivakumar, Naveen Uppalapati, Girish Chowdhary,
- Abstract summary: Keypoint-based visual navigation has been shown to perform well in under-canopy environments.
We train a base-learner that can quickly adapt to new conditions, enabling more robust navigation in low-data regimes.
- Score: 4.923031976899536
- License:
- Abstract: Autonomous under-canopy navigation faces additional challenges compared to over-canopy settings - for example the tight spacing between the crop rows, degraded GPS accuracy and excessive clutter. Keypoint-based visual navigation has been shown to perform well in these conditions, however the differences between agricultural environments in terms of lighting, season, soil and crop type mean that a domain shift will likely be encountered at some point of the robot deployment. In this paper, we explore the use of Meta-Learning to overcome this domain shift using a minimal amount of data. We train a base-learner that can quickly adapt to new conditions, enabling more robust navigation in low-data regimes.
Related papers
- AdaCropFollow: Self-Supervised Online Adaptation for Visual Under-Canopy Navigation [31.214318150001947]
Under-canopy agricultural robots can enable various applications like precise monitoring, spraying, weeding, and plant manipulation tasks.
We propose a self-supervised online adaptation method for adapting the semantic keypoint representation using a visual foundational model, geometric prior, and pseudo labeling.
This can enable fully autonomous row-following capability in under-canopy robots across fields and crops without requiring human intervention.
arXiv Detail & Related papers (2024-10-16T09:52:38Z) - Hierarchical end-to-end autonomous navigation through few-shot waypoint detection [0.0]
Human navigation is facilitated through the association of actions with landmarks.
Current autonomous navigation schemes rely on accurate positioning devices and algorithms as well as extensive streams of sensory data collected from the environment.
We propose a hierarchical end-to-end meta-learning scheme that enables a mobile robot to navigate in a previously unknown environment.
arXiv Detail & Related papers (2024-09-23T00:03:39Z) - Lessons from Deploying CropFollow++: Under-Canopy Agricultural Navigation with Keypoints [4.825377557319356]
We present a vision-based navigation system for under-canopy agricultural robots using semantic keypoints.
Our system, CropFollow++, introduces modular and interpretable perception architecture with a learned semantic keypoint representation.
arXiv Detail & Related papers (2024-04-26T22:46:17Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - Wait, That Feels Familiar: Learning to Extrapolate Human Preferences for
Preference Aligned Path Planning [46.66453816117135]
Preference extrApolation for Terrain awarE Robot Navigation, PATERN, is a novel framework for extrapolating operator terrain preferences for visual navigation.
We show PATERN robustly generalizes to diverse terrains and varied lighting conditions, while navigating in a preference aligned manner.
arXiv Detail & Related papers (2023-09-18T16:24:26Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
We propose a navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps.
Ego$2$-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation.
arXiv Detail & Related papers (2023-07-23T14:01:05Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Lifelong Topological Visual Navigation [16.41858724205884]
We propose a learning-based visual navigation method with graph update strategies that improve lifelong navigation performance over time.
We take inspiration from sampling-based planning algorithms to build image-based topological graphs, resulting in sparser graphs yet with higher navigation performance compared to baseline methods.
Unlike controllers that learn from fixed training environments, we show that our model can be finetuned using a relatively small dataset from the real-world environment where the robot is deployed.
arXiv Detail & Related papers (2021-10-16T06:16:14Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images.
Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation.
We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation.
arXiv Detail & Related papers (2021-03-07T02:16:24Z) - Beyond the Nav-Graph: Vision-and-Language Navigation in Continuous
Environments [48.898567402373324]
We develop a language-guided navigation task set in a continuous 3D environment.
By being situated in continuous environments, this setting lifts a number of assumptions implicit in prior work.
arXiv Detail & Related papers (2020-04-06T17:49:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.