Model-free learning of probability flows: Elucidating the nonequilibrium dynamics of flocking
- URL: http://arxiv.org/abs/2411.14317v1
- Date: Thu, 21 Nov 2024 17:08:06 GMT
- Title: Model-free learning of probability flows: Elucidating the nonequilibrium dynamics of flocking
- Authors: Nicholas M. Boffi, Eric Vanden-Eijnden,
- Abstract summary: High dimensionality of the phase space renders traditional computational techniques infeasible for estimating the entropy production rate.
We derive a new physical connection between the probability current and two local definitions of the EPR for inertial systems.
Our results highlight that entropy is consumed on the spatial interface of a flock as the interplay between alignment and fluctuation dynamically creates and annihilates order.
- Score: 15.238808518078567
- License:
- Abstract: Active systems comprise a class of nonequilibrium dynamics in which individual components autonomously dissipate energy. Efforts towards understanding the role played by activity have centered on computation of the entropy production rate (EPR), which quantifies the breakdown of time reversal symmetry. A fundamental difficulty in this program is that high dimensionality of the phase space renders traditional computational techniques infeasible for estimating the EPR. Here, we overcome this challenge with a novel deep learning approach that estimates probability currents directly from stochastic system trajectories. We derive a new physical connection between the probability current and two local definitions of the EPR for inertial systems, which we apply to characterize the departure from equilibrium in a canonical model of flocking. Our results highlight that entropy is produced and consumed on the spatial interface of a flock as the interplay between alignment and fluctuation dynamically creates and annihilates order. By enabling the direct visualization of when and where a given system is out of equilibrium, we anticipate that our methodology will advance the understanding of a broad class of complex nonequilibrium dynamics.
Related papers
- System Symmetry and the Classification of Out-of-Time-Ordered Correlator Dynamics in Quantum Chaos [1.534667887016089]
We study the universality of out-of-time-ordered correlator (OTOC) dynamics in quantum chaotic systems.
We show that ensemble-averaged OTOC dynamics exhibit distinct universal behaviors depending on system symmetry.
arXiv Detail & Related papers (2024-10-07T03:03:09Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - A Data Driven Method for Computing Quasipotentials [8.055813148141246]
The quasipotential plays a central role in characterizing statistics of transition events and likely transition paths.
Traditional methods based on the dynamic programming principle or path space tend to suffer from the curse of dimensionality.
We show that our method can effectively compute quasipotential landscapes without requiring spatial discretization or solving path-space optimization problems.
arXiv Detail & Related papers (2020-12-13T02:32:49Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Assessing the role of initial correlations in the entropy production
rate for non-equilibrium harmonic dynamics [0.0]
We shed light on the relation between correlations, initial preparation of the system and non-Markovianity.
We show that the global purity of the initial state of the system influences the behaviour of the entropy production rate.
arXiv Detail & Related papers (2020-04-22T17:29:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.