Multimodal Autoregressive Pre-training of Large Vision Encoders
- URL: http://arxiv.org/abs/2411.14402v1
- Date: Thu, 21 Nov 2024 18:31:25 GMT
- Title: Multimodal Autoregressive Pre-training of Large Vision Encoders
- Authors: Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T Toshev, Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, Alaaeldin El-Nouby,
- Abstract summary: We present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process.
Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification.
- Score: 85.39154488397931
- License:
- Abstract: We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.
Related papers
- FLIER: Few-shot Language Image Models Embedded with Latent Representations [2.443383032451177]
Few-shot Language Image model embedded with latent representations (FLIER) for image recognition.
We first generate images and corresponding latent representations via Stable Diffusion with the textual inputs from GPT-3.
With latent representations as "models-understandable pixels", we introduce a flexible convolutional neural network with two convolutional layers to be the latent encoder.
arXiv Detail & Related papers (2024-10-10T06:27:46Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
We build performant Multimodal Large Language Models (MLLMs)
In particular, we study the importance of various architecture components and data choices.
We demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data.
arXiv Detail & Related papers (2024-03-14T17:51:32Z) - CoT-MAE v2: Contextual Masked Auto-Encoder with Multi-view Modeling for
Passage Retrieval [34.08763911138496]
This study brings multi-view modeling to the contextual masked auto-encoder.
We refer to this multi-view pretraining method as CoT-MAE v2.
arXiv Detail & Related papers (2023-04-05T08:00:38Z) - Exploring Stochastic Autoregressive Image Modeling for Visual
Representation [24.582376834198403]
We propose a novel autoregressive image modeling (named SAIM) by the two simple designs.
By introducing prediction and the parallel encoder-decoder, SAIM significantly improve the performance of autoregressive image modeling.
Our method achieves the best accuracy (83.9%) on the vanilla ViT-Base model among methods using only ImageNet-1K data.
arXiv Detail & Related papers (2022-12-03T13:04:29Z) - Distilled Dual-Encoder Model for Vision-Language Understanding [50.42062182895373]
We propose a cross-modal attention distillation framework to train a dual-encoder model for vision-language understanding tasks.
We show that applying the cross-modal attention distillation for both pre-training and fine-tuning stages achieves further improvements.
arXiv Detail & Related papers (2021-12-16T09:21:18Z) - Masked Autoencoders Are Scalable Vision Learners [60.97703494764904]
Masked autoencoders (MAE) are scalable self-supervised learners for computer vision.
Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels.
Coupling these two designs enables us to train large models efficiently and effectively.
arXiv Detail & Related papers (2021-11-11T18:46:40Z) - VLMo: Unified Vision-Language Pre-Training with
Mixture-of-Modality-Experts [46.55920956687346]
We present a unified Vision-Language pretrained Model (VLMo) that jointly learns a dual encoder and a fusion encoder with a modular Transformer network.
Because of the modeling flexibility of MoME, pretrained VLMo can be fine-tuned as a fusion encoder for vision-language classification tasks.
We propose a stagewise pre-training strategy, which effectively leverages large-scale image-only and text-only data besides image-text pairs.
arXiv Detail & Related papers (2021-11-03T17:20:36Z) - Attention-Based Multimodal Image Matching [16.335191345543063]
We propose an attention-based approach for multimodal image patch matching using a Transformer encoder.
Our encoder is shown to efficiently aggregate multiscale image embeddings while emphasizing task-specific appearance-invariant image cues.
This is the first successful implementation of the Transformer encoder architecture to the multimodal image patch matching task.
arXiv Detail & Related papers (2021-03-20T21:14:24Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM) aims to bridge the gap between visual feature compression and classical video coding.
We employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames.
arXiv Detail & Related papers (2020-01-09T14:18:18Z) - Towards Coding for Human and Machine Vision: A Scalable Image Coding
Approach [104.02201472370801]
We come up with a novel image coding framework by leveraging both the compressive and the generative models.
By introducing advanced generative models, we train a flexible network to reconstruct images from compact feature representations and the reference pixels.
Experimental results demonstrate the superiority of our framework in both human visual quality and facial landmark detection.
arXiv Detail & Related papers (2020-01-09T10:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.