Non-Hermitian Spin-Spin Interaction Mediated by Chiral Phonons
- URL: http://arxiv.org/abs/2411.14545v2
- Date: Mon, 25 Nov 2024 04:18:17 GMT
- Title: Non-Hermitian Spin-Spin Interaction Mediated by Chiral Phonons
- Authors: Haowei Xu, Guoqing Wang, Changhao Li, Hao Tang, Paola Cappellaro, Ju Li,
- Abstract summary: We introduce an off-diagonal non-Hermitian spin-spin interaction mediated by chiral phonons.
The resulting non-Hermitian interaction can reach the kHz range for electron spins.
The effect may have wide-ranging applications in cascaded quantum systems, non-Hermitian many-body physics, and non-Hermitian cooling.
- Score: 10.115394047612014
- License:
- Abstract: Non-Hermiticity and chirality are two fundamental properties known to give rise to various intriguing phenomena. However, the interplay between these properties has been rarely explored. In this work, we bridge this gap by introducing an off-diagonal non-Hermitian spin-spin interaction mediated by chiral phonons. This interaction arises from the spin-selectivity due to the locking between phonon momentum and angular momentum in chiral materials. The resulting non-Hermitian interaction mediated by the vacuum field of chiral phonons can reach the kHz range for electron spins and can be further enhanced by externally driven mechanical waves, potentially leading to observable effects in the quantum regime. Moreover, the long-range nature of phonon-mediated interactions enables the realization of the long-desired non-Hermitian interaction among multiple spins. The effect proposed in this work may have wide-ranging applications in cascaded quantum systems, non-Hermitian many-body physics, and non-Hermitian cooling.
Related papers
- An Explicit Wavefunction of the Interacting Non-Hermitian Spin-1/2 1D System [9.980836334866664]
We present an explicit Bethe-ansatz wavefunction to a 1D spin-$frac12$ interacting fermion system.
We show a resonance resulting from the interplay between interaction and non-Hermitian spin-orbit coupling.
arXiv Detail & Related papers (2024-09-06T08:28:58Z) - Unconventional and robust light-matter interactions based on the non-Hermitian skin effect [1.346671070856618]
We study a series of unconventional light-matter interactions between quantum emitters and the Hatano--Nelson model.
We find that the protection from dissipation arises from a cooperation of the non-Hermiticity and the self-interference effect.
These results have potential applications in engineering exotic spin Hamiltonians and quantum networks.
arXiv Detail & Related papers (2024-08-19T09:20:32Z) - Nonreciprocal synchronization of active quantum spins [0.0]
We present a model of two species of quantum spins that interact in an antagonistic nonreciprocal way.
We show that nonreciprocal interactions deeply affect their synchronization dynamics.
Our work opens a new avenue to explore nonreciprocal interactions in active quantum matter.
arXiv Detail & Related papers (2024-06-05T15:12:34Z) - Spin Hall conductivity of interacting two-dimensional electron systems [0.0]
path-integral approach incorporated within the Keldysh formalism is used to derive the kinetic equation for the semiclassical Green's function.
We discuss the frequency dependence of the spin Hall conductivity and further elucidate the role of electron interactions at finite temperatures for both the ballistic and diffusive regimes of transport.
arXiv Detail & Related papers (2022-08-08T03:13:13Z) - Tunable itinerant spin dynamics with polar molecules [2.830197032154302]
Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field.
Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics.
arXiv Detail & Related papers (2022-08-03T16:57:36Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.