FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data
- URL: http://arxiv.org/abs/2411.14717v1
- Date: Fri, 22 Nov 2024 04:09:23 GMT
- Title: FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data
- Authors: Binqian Xu, Xiangbo Shu, Haiyang Mei, Guosen Xie, Basura Fernando, Mike Zheng Shou, Jinhui Tang,
- Abstract summary: Fine-tuning Multimodal Large Language Models (MLLMs) with Federated Learning (FL) allows for expanding the training data scope by including private data sources.
We introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios.
We develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies.
- Score: 64.50893177169996
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have made significant advancements, demonstrating powerful capabilities in processing and understanding multimodal data. Fine-tuning MLLMs with Federated Learning (FL) allows for expanding the training data scope by including private data sources, thereby enhancing their practical applicability in privacy-sensitive domains. However, current research remains in the early stage, particularly in addressing the \textbf{multimodal heterogeneities} in real-world applications. In this paper, we introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios, laying the groundwork for the research in the field. Our benchmark encompasses two datasets, five comparison baselines, and four multimodal scenarios, incorporating over ten types of modal heterogeneities. To address the challenges posed by modal heterogeneity, we develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies. Extensive experimental results show that our proposed FL paradigm improves the performance of MLLMs by broadening the range of training data and mitigating multimodal heterogeneity. Code is available at https://github.com/1xbq1/FedMLLM
Related papers
- MLLM-FL: Multimodal Large Language Model Assisted Federated Learning on Heterogeneous and Long-tailed Data [25.45278447786954]
We introduce a novel federated learning framework, named Multimodal Large Language Model Assisted Federated Learning (MLLM-FL)
Our framework is adept at harnessing the extensive, yet previously underexploited, open-source data accessible from websites and powerful server-side computational resources.
arXiv Detail & Related papers (2024-09-09T21:04:16Z) - The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
We find that the development of models and data is not two separate paths but rather interconnected.
On the one hand, vaster and higher-quality data contribute to better performance of MLLMs; on the other hand, MLLMs can facilitate the development of data.
To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective.
arXiv Detail & Related papers (2024-07-11T15:08:11Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - ModaVerse: Efficiently Transforming Modalities with LLMs [25.49713745405194]
We introduce ModaVerse, a Multi-modal Large Language Model capable of comprehending and transforming content across various modalities.
We propose a novel Input/Output (I/O) alignment mechanism that operates directly at the level of natural language.
arXiv Detail & Related papers (2024-01-12T06:28:54Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT) approaches can be used to enhance the capability of Large Language Models (LLMs) on complex reasoning tasks.
However, the selection of optimal CoT demonstration examples in multi-modal reasoning remains less explored.
We introduce a novel approach that addresses this challenge by using retrieval mechanisms to automatically select demonstration examples.
arXiv Detail & Related papers (2023-12-04T08:07:21Z) - How to Bridge the Gap between Modalities: A Comprehensive Survey on
Multimodal Large Language Model [12.890344377484759]
This review paper explores Multimodal Large Language Models (MLLMs)
MLLMs integrate Large Language Models (LLMs) like GPT-4 to handle multimodal data such as text and vision.
Choosing the appropriate modality alignment method is crucial, as improper methods might require more parameters with limited performance improvement.
arXiv Detail & Related papers (2023-11-10T09:51:24Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.