Point Cloud Understanding via Attention-Driven Contrastive Learning
- URL: http://arxiv.org/abs/2411.14744v1
- Date: Fri, 22 Nov 2024 05:41:00 GMT
- Title: Point Cloud Understanding via Attention-Driven Contrastive Learning
- Authors: Yi Wang, Jiaze Wang, Ziyu Guo, Renrui Zhang, Donghao Zhou, Guangyong Chen, Anfeng Liu, Pheng-Ann Heng,
- Abstract summary: Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms.
PointACL is an attention-driven contrastive learning framework designed to address these limitations.
Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions.
- Score: 64.65145700121442
- License:
- Abstract: Recently Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms, however, these methods often overlook latent information in less prominent regions, leading to increased sensitivity to perturbations and limited global comprehension. To solve this issue, we introduce PointACL, an attention-driven contrastive learning framework designed to address these limitations. Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions, enhancing the understanding of global structures within the point cloud. Then we combine the original pre-training loss with a contrastive learning loss, improving feature discrimination and generalization. Extensive experiments validate the effectiveness of PointACL, as it achieves state-of-the-art performance across a variety of 3D understanding tasks, including object classification, part segmentation, and few-shot learning. Specifically, when integrated with different Transformer backbones like Point-MAE and PointGPT, PointACL demonstrates improved performance on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart. This highlights its superior capability in capturing both global and local features, as well as its enhanced robustness against perturbations and incomplete data.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - PointMoment:Mixed-Moment-based Self-Supervised Representation Learning
for 3D Point Clouds [11.980787751027872]
We propose PointMoment, a novel framework for point cloud self-supervised representation learning.
Our framework does not require any special techniques such as asymmetric network architectures, gradient stopping, etc.
arXiv Detail & Related papers (2023-12-06T08:49:55Z) - Bidirectional Knowledge Reconfiguration for Lightweight Point Cloud
Analysis [74.00441177577295]
Point cloud analysis faces computational system overhead, limiting its application on mobile or edge devices.
This paper explores feature distillation for lightweight point cloud models.
We propose bidirectional knowledge reconfiguration to distill informative contextual knowledge from the teacher to the student.
arXiv Detail & Related papers (2023-10-08T11:32:50Z) - Edge Aware Learning for 3D Point Cloud [8.12405696290333]
This paper proposes an innovative approach to Hierarchical Edge Aware 3D Point Cloud Learning (HEA-Net)
It seeks to address the challenges of noise in point cloud data, and improve object recognition and segmentation by focusing on edge features.
We present an innovative edge-aware learning methodology, specifically designed to enhance point cloud classification and segmentation.
arXiv Detail & Related papers (2023-09-23T20:12:32Z) - pCTFusion: Point Convolution-Transformer Fusion with Semantic Aware Loss
for Outdoor LiDAR Point Cloud Segmentation [8.24822602555667]
This study proposes a new architecture, pCTFusion, which combines kernel-based convolutions and self-attention mechanisms.
The proposed architecture employs two types of self-attention mechanisms, local and global, based on the hierarchical positions of the encoder blocks.
The results are particularly encouraging for minor classes, often misclassified due to class imbalance, lack of space, and neighbor-aware feature encoding.
arXiv Detail & Related papers (2023-07-27T11:12:48Z) - Few-Shot Point Cloud Semantic Segmentation via Contrastive
Self-Supervision and Multi-Resolution Attention [6.350163959194903]
We propose a contrastive self-supervision framework for few-shot learning pretrain.
Specifically, we implement a novel contrastive learning approach with a learnable augmentor for a 3D point cloud.
We develop a multi-resolution attention module using both the nearest and farthest points to extract the local and global point information more effectively.
arXiv Detail & Related papers (2023-02-21T07:59:31Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.