Cell as Point: One-Stage Framework for Efficient Cell Tracking
- URL: http://arxiv.org/abs/2411.14833v2
- Date: Mon, 10 Mar 2025 23:22:26 GMT
- Title: Cell as Point: One-Stage Framework for Efficient Cell Tracking
- Authors: Yaxuan Song, Jianan Fan, Heng Huang, Mei Chen, Weidong Cai,
- Abstract summary: We propose a novel end-to-end one-stage framework that reimagines cell tracking by treating Cell as Point.<n>Unlike traditional methods, CAP eliminates the need for explicit detection or segmentation, instead jointly tracking cells for sequences in one stage.<n> CAP demonstrates promising cell tracking performance and is 10 to 55 times more efficient than existing methods.
- Score: 54.19259129722988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional multi-stage cell tracking approaches rely heavily on detection or segmentation in each frame as a prerequisite, requiring substantial resources for high-quality segmentation masks and increasing the overall prediction time. To address these limitations, we propose CAP, a novel end-to-end one-stage framework that reimagines cell tracking by treating Cell as Point. Unlike traditional methods, CAP eliminates the need for explicit detection or segmentation, instead jointly tracking cells for sequences in one stage by leveraging the inherent correlations among their trajectories. This simplification reduces both labeling requirements and pipeline complexity. However, directly processing the entire sequence in one stage poses challenges related to data imbalance in capturing cell division events and long sequence inference. To solve these challenges, CAP introduces two key innovations: (1) adaptive event-guided (AEG) sampling, which prioritizes cell division events to mitigate the occurrence imbalance of cell events, and (2) the rolling-as-window (RAW) inference strategy, which ensures continuous and stable tracking of newly emerging cells over extended sequences. By removing the dependency on segmentation-based preprocessing while addressing the challenges of imbalanced occurrence of cell events and long-sequence tracking, CAP demonstrates promising cell tracking performance and is 10 to 55 times more efficient than existing methods. The code and model checkpoints will be available soon.
Related papers
- Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.
A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.
We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - GCCRR: A Short Sequence Gait Cycle Segmentation Method Based on Ear-Worn IMU [3.2428847882267404]
This paper addresses the critical task of gait cycle segmentation using short sequences from ear-worn IMUs.
We introduce the Gait Characteristic Curve Regression and Restoration (GCCRR) method, a novel two-stage approach for fine-grained gait phase segmentation.
Our method employs Bi-LSTM-based deep learning algorithms for regression to ensure reliable segmentation for short gait sequences.
arXiv Detail & Related papers (2024-09-02T07:00:34Z) - Deep Temporal Sequence Classification and Mathematical Modeling for Cell Tracking in Dense 3D Microscopy Videos of Bacterial Biofilms [18.563062576080704]
We introduce a novel cell tracking algorithm named DenseTrack.
DenseTrack integrates deep learning with mathematical model-based strategies to establish correspondences between consecutive frames.
We present an eigendecomposition-based cell division detection strategy.
arXiv Detail & Related papers (2024-06-27T23:26:57Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
We propose CHELA, which replaces state space models with short-long convolutions and implements linear attention in a divide-and-conquer manner.
Our experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-06-12T12:12:38Z) - Data Augmentation Policy Search for Long-Term Forecasting [4.910937238451485]
We introduce a time-series automatic augmentation approach named TSAA.
TSAA tackles the associated bilevel optimization problem through a two-step process.
It consistently outperforms several robust baselines.
arXiv Detail & Related papers (2024-05-01T04:55:51Z) - CUPre: Cross-domain Unsupervised Pre-training for Few-Shot Cell
Segmentation [36.52664417716791]
This work considers the problem of pre-training models for few-shot cell segmentation, where massive unlabeled cell images are available but only a small proportion is annotated.
We propose Cross-domain Unsupervised Pre-training, namely CUPre, transferring the capability of object detection and instance segmentation for common visual objects to the visual domain of cells using unlabeled images.
Experiment shows that CUPre can outperform existing pre-training methods, achieving the highest average precision (AP) for few-shot cell segmentation and detection.
arXiv Detail & Related papers (2023-10-06T02:35:31Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - OCELOT: Overlapped Cell on Tissue Dataset for Histopathology [13.691924123273004]
We release OCELOT, a dataset dedicated to the study of cell-tissue relationships for cell detection in histopathology.
We propose multi-task learning approaches that benefit from learning both cell and tissue tasks simultaneously.
On the OCELOT test set in particular, we show up to 6.79 improvement in F1-score.
arXiv Detail & Related papers (2023-03-23T08:57:11Z) - Cell tracking for live-cell microscopy using an activity-prioritized
assignment strategy [0.9134244356393666]
Cell tracking is an essential tool in live-cell imaging to determine single-cell features, such as division patterns or elongation rates.
In microbial live-cell experiments cells are growing, moving, and dividing over time, to form cell colonies that are densely packed in mono-layer structures.
We propose a fast-prioritized cell tracking approach, which consists of activity-prioritized nearest neighbor assignment of growing cells and a solver that assigns splitting mother cells to their daughters.
arXiv Detail & Related papers (2022-10-20T17:40:31Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Low-rank Optimal Transport: Approximation, Statistics and Debiasing [51.50788603386766]
Low-rank optimal transport (LOT) approach advocated in citescetbon 2021lowrank
LOT is seen as a legitimate contender to entropic regularization when compared on properties of interest.
We target each of these areas in this paper in order to cement the impact of low-rank approaches in computational OT.
arXiv Detail & Related papers (2022-05-24T20:51:37Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
We propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction.
We adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model.
arXiv Detail & Related papers (2021-09-13T20:50:37Z) - CellTrack R-CNN: A Novel End-To-End Deep Neural Network for Cell
Segmentation and Tracking in Microscopy Images [21.747994390120105]
We propose a novel approach to combine cell segmentation and cell tracking into a unified end-to-end deep learning based framework.
Our method outperforms state-of-the-art algorithms in terms of both cell segmentation and cell tracking accuracies.
arXiv Detail & Related papers (2021-02-20T15:55:40Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
We propose a two-step post-processing procedure, Split and Expand, to improve the conversion of segmentation maps to instances.
In the Split step, we split clumps of cells from the segmentation map into individual cell instances with the guidance of cell-center predictions.
In the Expand step, we find missing small cells using the cell-center predictions.
arXiv Detail & Related papers (2020-07-21T14:05:09Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
We present a method for the segmentation of touching cells in microscopy images.
By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process.
This representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types.
arXiv Detail & Related papers (2020-04-03T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.