Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation
- URL: http://arxiv.org/abs/2411.14883v1
- Date: Fri, 22 Nov 2024 12:06:24 GMT
- Title: Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation
- Authors: Yuheng Xu, Taiping Zhang,
- Abstract summary: Domain-invariant representation learning is a powerful method for domain generalization.
Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data.
We propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space.
- Score: 1.93061220186624
- License:
- Abstract: Domain-invariant representation learning is a powerful method for domain generalization. Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data, potentially leading to the loss of valuable features. To address these issues, we hypothesize that an ideal generalized representation should exhibit similar pattern responses within the same channel across cross-domain images. Based on this hypothesis, we use deep features from the source domain as queries, and deep features from the generated domain as keys and values. Through a cross-channel attention mechanism, the original deep features are reconstructed into robust regularization representations, forming an explicit constraint that guides the model to learn domain-invariant representations. Additionally, style augmentation is another common method. However, existing methods typically generate new styles through convex combinations of source domains, which limits the diversity of training samples by confining the generated styles to the original distribution. To overcome this limitation, we propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space, significantly expanding the domain range. Extensive experimental results demonstrate that our proposed methods achieve superior performance on two standard domain generalization benchmarks for medical image segmentation.
Related papers
- Causality-inspired Latent Feature Augmentation for Single Domain Generalization [13.735443005394773]
Single domain generalization (Single-DG) intends to develop a generalizable model with only one single training domain to perform well on other unknown target domains.
Under the domain-hungry configuration, how to expand the coverage of source domain and find intrinsic causal features across different distributions is the key to enhancing the models' generalization ability.
We propose a novel causality-inspired latent feature augmentation method for Single-DG by learning the meta-knowledge of feature-level transformation based on causal learning and interventions.
arXiv Detail & Related papers (2024-06-10T02:42:25Z) - Cross-Domain Feature Augmentation for Domain Generalization [16.174824932970004]
We propose a cross-domain feature augmentation method named XDomainMix.
Experiments on widely used benchmark datasets demonstrate that our proposed method is able to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-05-14T13:24:19Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - Cross Contrasting Feature Perturbation for Domain Generalization [11.863319505696184]
Domain generalization aims to learn a robust model from source domains that generalize well on unseen target domains.
Recent studies focus on generating novel domain samples or features to diversify distributions complementary to source domains.
We propose an online one-stage Cross Contrasting Feature Perturbation framework to simulate domain shift.
arXiv Detail & Related papers (2023-07-24T03:27:41Z) - Randomized Adversarial Style Perturbations for Domain Generalization [49.888364462991234]
We propose a novel domain generalization technique, referred to as Randomized Adversarial Style Perturbation (RASP)
The proposed algorithm perturbs the style of a feature in an adversarial direction towards a randomly selected class, and makes the model learn against being misled by the unexpected styles observed in unseen target domains.
We evaluate the proposed algorithm via extensive experiments on various benchmarks and show that our approach improves domain generalization performance, especially in large-scale benchmarks.
arXiv Detail & Related papers (2023-04-04T17:07:06Z) - Cross-Domain Ensemble Distillation for Domain Generalization [17.575016642108253]
We propose a simple yet effective method for domain generalization, named cross-domain ensemble distillation (XDED)
Our method generates an ensemble of the output logits from training data with the same label but from different domains and then penalizes each output for the mismatch with the ensemble.
We show that models learned by our method are robust against adversarial attacks and image corruptions.
arXiv Detail & Related papers (2022-11-25T12:32:36Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Model-Based Domain Generalization [96.84818110323518]
We propose a novel approach for the domain generalization problem called Model-Based Domain Generalization.
Our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.
arXiv Detail & Related papers (2021-02-23T00:59:02Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.