Image Harmonization using Robust Restricted CDF Matching
- URL: http://arxiv.org/abs/2411.15213v1
- Date: Wed, 20 Nov 2024 12:12:47 GMT
- Title: Image Harmonization using Robust Restricted CDF Matching
- Authors: Roman Stoklasa,
- Abstract summary: We present a method of image harmonization using Cumulative Distribution Function (CDF) matching based on curve fitting.
The transformation of image intensities is non-linear but still smooth and elastic", as compared to other known histogram matching algorithms.
Even though we demonstrate our method for MRI images, the method is generic enough to apply to other types of imaging data.
- Score: 0.0
- License:
- Abstract: Deployment of machine learning algorithms into real-world practice is still a difficult task. One of the challenges lies in the unpredictable variability of input data, which may differ significantly among individual users, institutions, scanners, etc. The input data variability can be decreased by using suitable data preprocessing with robust data harmonization. In this paper, we present a method of image harmonization using Cumulative Distribution Function (CDF) matching based on curve fitting. This approach does not ruin local variability and individual important features. The transformation of image intensities is non-linear but still ``smooth and elastic", as compared to other known histogram matching algorithms. Non-linear transformation allows for a very good match to the template. At the same time, elasticity constraints help to preserve local variability among individual inputs, which may encode important features for subsequent machine-learning processing. The pre-defined template CDF offers a better and more intuitive control for the input data transformation compared to other methods, especially ML-based ones. Even though we demonstrate our method for MRI images, the method is generic enough to apply to other types of imaging data.
Related papers
- Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - Compressed Sensing MRI Reconstruction Regularized by VAEs with
Structured Image Covariance [7.544757765701024]
This paper investigates how generative models, trained on ground-truth images, can be used changesas priors for inverse problems.
We utilize variational autoencoders (VAEs) that generate not only an image but also a covariance uncertainty matrix for each image.
We compare our proposed learned regularization against other unlearned regularization approaches and unsupervised and supervised deep learning methods.
arXiv Detail & Related papers (2022-10-26T09:51:49Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
We propose a novel self-supervised learning (FedMed) for brain image synthesis.
An affine transform loss (ATL) was formulated to make use of severely distorted images without violating privacy legislation.
The proposed method demonstrates advanced performance in both the quality of synthesized results under a severely misaligned and unpaired data setting.
arXiv Detail & Related papers (2022-01-29T13:45:39Z) - Robustness via Uncertainty-aware Cycle Consistency [44.34422859532988]
Unpaired image-to-image translation refers to learning inter-image-domain mapping without corresponding image pairs.
Existing methods learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty.
We propose a novel probabilistic method based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC)
arXiv Detail & Related papers (2021-10-24T15:33:21Z) - Attention for Image Registration (AiR): an unsupervised Transformer
approach [7.443843354775884]
We introduce an attention mechanism in the deformable image registration problem.
Our proposed approach is based on a Transformer framework called AiR, which can be efficiently trained on GPGPU devices.
The method learns an unsupervised generated deformation map and is tested on two benchmark datasets.
arXiv Detail & Related papers (2021-05-05T18:49:32Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z) - End-to-end Interpretable Learning of Non-blind Image Deblurring [102.75982704671029]
Non-blind image deblurring is typically formulated as a linear least-squares problem regularized by natural priors on the corresponding sharp picture's gradients.
We propose to precondition the Richardson solver using approximate inverse filters of the (known) blur and natural image prior kernels.
arXiv Detail & Related papers (2020-07-03T15:45:01Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Super-resolution Variational Auto-Encoders [8.873449722727026]
We propose to enhance VAEs by adding a random variable that is a downscaled version of the original image.
We present empirically that the proposed approach performs comparably to VAEs in terms of the negative log-likelihood.
arXiv Detail & Related papers (2020-06-09T12:32:16Z) - Variational Clustering: Leveraging Variational Autoencoders for Image
Clustering [8.465172258675763]
Variational Autoencoders (VAEs) naturally lend themselves to learning data distributions in a latent space.
We propose a method based on VAEs where we use a Gaussian Mixture prior to help cluster the images accurately.
Our method simultaneously learns a prior that captures the latent distribution of the images and a posterior to help discriminate well between data points.
arXiv Detail & Related papers (2020-05-10T09:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.