Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
- URL: http://arxiv.org/abs/2411.15216v1
- Date: Wed, 20 Nov 2024 16:17:40 GMT
- Title: Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
- Authors: Guangkun Nie, Gongzheng Tang, Shenda Hong,
- Abstract summary: Dist Loss is a loss function designed to minimize the distribution distance between the model's predictions and the target labels.
We have conducted experiments across three datasets spanning computer vision and healthcare.
- Score: 12.757563335570865
- License:
- Abstract: Imbalanced data distributions are prevalent in real-world scenarios, posing significant challenges in both imbalanced classification and imbalanced regression tasks. They often cause deep learning models to overfit in areas of high sample density (many-shot regions) while underperforming in areas of low sample density (few-shot regions). This characteristic restricts the utility of deep learning models in various sectors, notably healthcare, where areas with few-shot data hold greater clinical relevance. While recent studies have shown the benefits of incorporating distribution information in imbalanced classification tasks, such strategies are rarely explored in imbalanced regression. In this paper, we address this issue by introducing a novel loss function, termed Dist Loss, designed to minimize the distribution distance between the model's predictions and the target labels in a differentiable manner, effectively integrating distribution information into model training. Dist Loss enables deep learning models to regularize their output distribution during training, effectively enhancing their focus on few-shot regions. We have conducted extensive experiments across three datasets spanning computer vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR. The results demonstrate that Dist Loss effectively mitigates the negative impact of imbalanced data distribution on model performance, achieving state-of-the-art results in sparse data regions. Furthermore, Dist Loss is easy to integrate, complementing existing methods.
Related papers
- Gradient-based Class Weighting for Unsupervised Domain Adaptation in Dense Prediction Visual Tasks [3.776249047528669]
This paper proposes a class-imbalance mitigation strategy that incorporates class-weights into the UDA learning losses.
The novelty of estimating these weights dynamically through the loss gradient defines a Gradient-based class weighting (GBW) learning.
GBW naturally increases the contribution of classes whose learning is hindered by large-represented classes.
arXiv Detail & Related papers (2024-07-01T14:34:25Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals.
We analyze the challenges these methods meet with the empirical experiment results.
We introduce a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance.
arXiv Detail & Related papers (2022-03-23T07:33:37Z) - Center Prediction Loss for Re-identification [65.58923413172886]
We propose a new loss based on center predictivity, that is, a sample must be positioned in a location of the feature space such that from it we can roughly predict the location of the center of same-class samples.
We show that this new loss leads to a more flexible intra-class distribution constraint while ensuring the between-class samples are well-separated.
arXiv Detail & Related papers (2021-04-30T03:57:31Z) - Deep Stable Learning for Out-Of-Distribution Generalization [27.437046504902938]
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution.
Eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models.
We propose to address this problem by removing the dependencies between features via learning weights for training samples.
arXiv Detail & Related papers (2021-04-16T03:54:21Z) - Unsupervised neural adaptation model based on optimal transport for
spoken language identification [54.96267179988487]
Due to the mismatch of statistical distributions of acoustic speech between training and testing sets, the performance of spoken language identification (SLID) could be drastically degraded.
We propose an unsupervised neural adaptation model to deal with the distribution mismatch problem for SLID.
arXiv Detail & Related papers (2020-12-24T07:37:19Z) - Generic Semi-Supervised Adversarial Subject Translation for Sensor-Based
Human Activity Recognition [6.2997667081978825]
This paper presents a novel generic and robust approach for semi-supervised domain adaptation in Human Activity Recognition.
It capitalizes on the advantages of the adversarial framework to tackle the shortcomings, by leveraging knowledge from annotated samples exclusively from the source subject and unlabeled ones of the target subject.
The results demonstrate the effectiveness of our proposed algorithms over state-of-the-art methods, which led in up to 13%, 4%, and 13% improvement of our high-level activities recognition metrics for Opportunity, LISSI, and PAMAP2 datasets.
arXiv Detail & Related papers (2020-11-11T12:16:23Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.