LPLgrad: Optimizing Active Learning Through Gradient Norm Sample Selection and Auxiliary Model Training
- URL: http://arxiv.org/abs/2411.15217v1
- Date: Wed, 20 Nov 2024 18:12:59 GMT
- Title: LPLgrad: Optimizing Active Learning Through Gradient Norm Sample Selection and Auxiliary Model Training
- Authors: Shreen Gul, Mohamed Elmahallawy, Sanjay Madria, Ardhendu Tripathy,
- Abstract summary: Loss Prediction Loss with Gradient Norm (LPLgrad) is designed to quantify model uncertainty effectively and improve the accuracy of image classification tasks.
LPLgrad operates in two distinct phases: (i) em Training Phase aims to predict the loss for input features by jointly training a main model and an auxiliary model.
This dual-model approach enhances the ability to extract complex input features and learn intrinsic patterns from the data effectively.
- Score: 2.762397703396293
- License:
- Abstract: Machine learning models are increasingly being utilized across various fields and tasks due to their outstanding performance and strong generalization capabilities. Nonetheless, their success hinges on the availability of large volumes of annotated data, the creation of which is often labor-intensive, time-consuming, and expensive. Many active learning (AL) approaches have been proposed to address these challenges, but they often fail to fully leverage the information from the core phases of AL, such as training on the labeled set and querying new unlabeled samples. To bridge this gap, we propose a novel AL approach, Loss Prediction Loss with Gradient Norm (LPLgrad), designed to quantify model uncertainty effectively and improve the accuracy of image classification tasks. LPLgrad operates in two distinct phases: (i) {\em Training Phase} aims to predict the loss for input features by jointly training a main model and an auxiliary model. Both models are trained on the labeled data to maximize the efficiency of the learning process, an aspect often overlooked in previous AL methods. This dual-model approach enhances the ability to extract complex input features and learn intrinsic patterns from the data effectively; (ii) {\em Querying Phase} that quantifies the uncertainty of the main model to guide sample selection. This is achieved by calculating the gradient norm of the entropy values for samples in the unlabeled dataset. Samples with the highest gradient norms are prioritized for labeling and subsequently added to the labeled set, improving the model's performance with minimal labeling effort. Extensive evaluations on real-world datasets demonstrate that the LPLgrad approach outperforms state-of-the-art methods by order of magnitude in terms of accuracy on a small number of labeled images, yet achieving comparable training and querying times in multiple image classification tasks.
Related papers
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - ST-CoNAL: Consistency-Based Acquisition Criterion Using Temporal
Self-Ensemble for Active Learning [7.94190631530826]
Active learning (AL) is becoming increasingly important to maximize the efficiency of the training process.
We present an AL algorithm, namely student-teacher consistency-based AL (ST-CoNAL)
Experiments conducted for image classification tasks on CIFAR-10, CIFAR-100, Caltech-256, and Tiny ImageNet datasets demonstrate that the proposed STCoNAL significantly better performance than the existing acquisition methods.
arXiv Detail & Related papers (2022-07-05T17:25:59Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Few-shot Learning via Dependency Maximization and Instance Discriminant
Analysis [21.8311401851523]
We study the few-shot learning problem, where a model learns to recognize new objects with extremely few labeled data per category.
We propose a simple approach to exploit unlabeled data accompanying the few-shot task for improving few-shot performance.
arXiv Detail & Related papers (2021-09-07T02:19:01Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Rethinking Curriculum Learning with Incremental Labels and Adaptive
Compensation [35.593312267921256]
Like humans, deep networks have been shown to learn better when samples are organized and introduced in a meaningful order or curriculum.
We propose Learning with Incremental Labels and Adaptive Compensation (LILAC), a two-phase method that incrementally increases the number of unique output labels.
arXiv Detail & Related papers (2020-01-13T21:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.