Sampling with Adaptive Variance for Multimodal Distributions
- URL: http://arxiv.org/abs/2411.15220v1
- Date: Wed, 20 Nov 2024 22:05:47 GMT
- Title: Sampling with Adaptive Variance for Multimodal Distributions
- Authors: Björn Engquist, Kui Ren, Yunan Yang,
- Abstract summary: We propose and analyze a class of distributions sampling algorithms for a bounded domain.
We show that a derivative-free version can be used for sampling without information on the Gibbs potential.
- Score: 14.121491356732188
- License:
- Abstract: We propose and analyze a class of adaptive sampling algorithms for multimodal distributions on a bounded domain, which share a structural resemblance to the classic overdamped Langevin dynamics. We first demonstrate that this class of linear dynamics with adaptive diffusion coefficients and vector fields can be interpreted and analyzed as weighted Wasserstein gradient flows of the Kullback--Leibler (KL) divergence between the current distribution and the target Gibbs distribution, which directly leads to the exponential convergence of both the KL and $\chi^2$ divergences, with rates depending on the weighted Wasserstein metric and the Gibbs potential. We then show that a derivative-free version of the dynamics can be used for sampling without gradient information of the Gibbs potential and that for Gibbs distributions with nonconvex potentials, this approach could achieve significantly faster convergence than the classical overdamped Langevin dynamics. A comparison of the mean transition times between local minima of a nonconvex potential further highlights the better efficiency of the derivative-free dynamics in sampling.
Related papers
- Sampling in Unit Time with Kernel Fisher-Rao Flow [0.0]
We introduce a new mean-field ODE and corresponding interacting particle systems (IPS) for sampling from an unnormalized target density.
The IPS are gradient-free, available in closed form, and only require the ability to sample from a reference density and compute the (unnormalized) target-to-reference density ratio.
arXiv Detail & Related papers (2024-01-08T13:43:56Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
We extend mean-field Langevin dynamics to minimax optimization over probability distributions for the first time with symmetric and provably convergent updates.
We also study time and particle discretization regimes and prove a new uniform-in-time propagation of chaos result.
arXiv Detail & Related papers (2023-12-02T13:01:29Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - An optimal control perspective on diffusion-based generative modeling [9.806130366152194]
We establish a connection between optimal control and generative models based on differential equations (SDEs)
In particular, we derive a Hamilton-Jacobi-Bellman equation that governs the evolution of the log-densities of the underlying SDE marginals.
We develop a novel diffusion-based method for sampling from unnormalized densities.
arXiv Detail & Related papers (2022-11-02T17:59:09Z) - Birth-death dynamics for sampling: Global convergence, approximations
and their asymptotics [9.011881058913184]
We build a practical numerical system based on the pure-death dynamics.
We show that the kernelized dynamics converge on finite time intervals, to pure gradient-death dynamics shrinks to zero.
Finally we prove the long-time results on the convergence of the states of the kernelized dynamics towards the Gibbs measure.
arXiv Detail & Related papers (2022-11-01T13:30:26Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Stochastic Normalizing Flows [52.92110730286403]
We introduce normalizing flows for maximum likelihood estimation and variational inference (VI) using differential equations (SDEs)
Using the theory of rough paths, the underlying Brownian motion is treated as a latent variable and approximated, enabling efficient training of neural SDEs.
These SDEs can be used for constructing efficient chains to sample from the underlying distribution of a given dataset.
arXiv Detail & Related papers (2020-02-21T20:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.