The Explabox: Model-Agnostic Machine Learning Transparency & Analysis
- URL: http://arxiv.org/abs/2411.15257v1
- Date: Fri, 22 Nov 2024 09:10:57 GMT
- Title: The Explabox: Model-Agnostic Machine Learning Transparency & Analysis
- Authors: Marcel Robeer, Michiel Bron, Elize Herrewijnen, Riwish Hoeseni, Floris Bex,
- Abstract summary: We present the Explabox: an open-source toolkit for transparent and responsible machine learning (ML) model development and usage.
It aids in achieving explainable, fair and robust models by employing a four-step strategy: explore, examine, explain and expose.
The toolkit encompasses digestibles for descriptive statistics, performance metrics, model behavior explanations (local and global) and robustness, security, and fairness assessments.
- Score: 1.9864651310779593
- License:
- Abstract: We present the Explabox: an open-source toolkit for transparent and responsible machine learning (ML) model development and usage. Explabox aids in achieving explainable, fair and robust models by employing a four-step strategy: explore, examine, explain and expose. These steps offer model-agnostic analyses that transform complex 'ingestibles' (models and data) into interpretable 'digestibles'. The toolkit encompasses digestibles for descriptive statistics, performance metrics, model behavior explanations (local and global), and robustness, security, and fairness assessments. Implemented in Python, Explabox supports multiple interaction modes and builds on open-source packages. It empowers model developers and testers to operationalize explainability, fairness, auditability, and security. The initial release focuses on text data and models, with plans for expansion. Explabox's code and documentation are available open-source at https://explabox.readthedocs.io/.
Related papers
- Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - VLMEvalKit: An Open-Source Toolkit for Evaluating Large Multi-Modality Models [89.63342806812413]
We present an open-source toolkit for evaluating large multi-modality models based on PyTorch.
VLMEvalKit implements over 70 different large multi-modality models, including both proprietary APIs and open-source models.
We host OpenVLM Leaderboard to track the progress of multi-modality learning research.
arXiv Detail & Related papers (2024-07-16T13:06:15Z) - pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$ is an open-source library that supports customizable interventions on a range of different PyTorch modules.
We show how $textbfpyvene$ provides a unified framework for performing interventions on neural models and sharing the intervened upon models with others.
arXiv Detail & Related papers (2024-03-12T16:46:54Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
This paper introduces FIND (Function INterpretation and Description), a benchmark suite for evaluating automated interpretability methods.
FIND contains functions that resemble components of trained neural networks, and accompanying descriptions of the kind we seek to generate.
We evaluate methods that use pretrained language models to produce descriptions of function behavior in natural language and code.
arXiv Detail & Related papers (2023-09-07T17:47:26Z) - PiML Toolbox for Interpretable Machine Learning Model Development and
Diagnostics [10.635578367440162]
PiML is an integrated and open-access Python toolbox for interpretable machine learning model development and model diagnostics.
It is designed with machine learning in both low-code and high-code modes, including data pipeline, model training and tuning, model interpretation and explanation.
arXiv Detail & Related papers (2023-05-07T08:19:07Z) - Plex: Towards Reliability using Pretrained Large Model Extensions [69.13326436826227]
We develop ViT-Plex and T5-Plex, pretrained large model extensions for vision and language modalities, respectively.
Plex greatly improves the state-of-the-art across reliability tasks, and simplifies the traditional protocol.
We demonstrate scaling effects over model sizes up to 1B parameters and pretraining dataset sizes up to 4B examples.
arXiv Detail & Related papers (2022-07-15T11:39:37Z) - An Understanding-Oriented Robust Machine Reading Comprehension Model [12.870425062204035]
We propose an understanding-oriented machine reading comprehension model to address three kinds of robustness issues.
Specifically, we first use a natural language inference module to help the model understand the accurate semantic meanings of input questions.
Third, we propose a multilanguage learning mechanism to address the issue of generalization.
arXiv Detail & Related papers (2022-07-01T03:32:02Z) - OmniXAI: A Library for Explainable AI [98.07381528393245]
We introduce OmniXAI, an open-source Python library of eXplainable AI (XAI)
It offers omni-way explainable AI capabilities and various interpretable machine learning techniques.
For practitioners, the library provides an easy-to-use unified interface to generate the explanations for their applications.
arXiv Detail & Related papers (2022-06-01T11:35:37Z) - The Language Interpretability Tool: Extensible, Interactive
Visualizations and Analysis for NLP Models [17.423179212411263]
Language Interpretability Tool (LIT) is an open-source platform for visualization and understanding of NLP models.
LIT integrates local explanations, aggregate analysis, and counterfactual generation into a streamlined, browser-based interface.
arXiv Detail & Related papers (2020-08-12T06:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.