Do LLMs Agree on the Creativity Evaluation of Alternative Uses?
- URL: http://arxiv.org/abs/2411.15560v2
- Date: Tue, 26 Nov 2024 09:25:22 GMT
- Title: Do LLMs Agree on the Creativity Evaluation of Alternative Uses?
- Authors: Abdullah Al Rabeyah, Fabrício Góes, Marco Volpe, Talles Medeiros,
- Abstract summary: This paper investigates whether large language models (LLMs) show agreement in assessing creativity in responses to the Alternative Uses Test (AUT)
Using an oracle benchmark set of AUT responses, we experiment with four state-of-the-art LLMs evaluating these outputs.
Results reveal high inter-model agreement, with Spearman correlations averaging above 0.7 across models and reaching over 0.77 with respect to the oracle.
- Score: 0.4326762849037007
- License:
- Abstract: This paper investigates whether large language models (LLMs) show agreement in assessing creativity in responses to the Alternative Uses Test (AUT). While LLMs are increasingly used to evaluate creative content, previous studies have primarily focused on a single model assessing responses generated by the same model or humans. This paper explores whether LLMs can impartially and accurately evaluate creativity in outputs generated by both themselves and other models. Using an oracle benchmark set of AUT responses, categorized by creativity level (common, creative, and highly creative), we experiment with four state-of-the-art LLMs evaluating these outputs. We test both scoring and ranking methods and employ two evaluation settings (comprehensive and segmented) to examine if LLMs agree on the creativity evaluation of alternative uses. Results reveal high inter-model agreement, with Spearman correlations averaging above 0.7 across models and reaching over 0.77 with respect to the oracle, indicating a high level of agreement and validating the reliability of LLMs in creativity assessment of alternative uses. Notably, models do not favour their own responses, instead they provide similar creativity assessment scores or rankings for alternative uses generated by other models. These findings suggest that LLMs exhibit impartiality and high alignment in creativity evaluation, offering promising implications for their use in automated creativity assessment.
Related papers
- Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes.
We find that the majority of disagreements are in opposition with standard reward modeling approaches.
We develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
arXiv Detail & Related papers (2024-10-18T17:32:22Z) - Leveraging LLMs for Dialogue Quality Measurement [27.046917937460798]
Large language models (LLMs) show robust zeroshot and few-shot capabilities across NLP tasks.
Manipulating factors such as model size, in-context examples, and selection techniques, we examine "chain-of-thought" (CoT) reasoning and label extraction procedures.
Our results indicate that LLMs that are suitably fine-tuned and have sufficient reasoning capabilities can be leveraged for automated dialogue evaluation.
arXiv Detail & Related papers (2024-06-25T06:19:47Z) - Language Model Council: Democratically Benchmarking Foundation Models on Highly Subjective Tasks [3.58262772907022]
We introduce the Language Model Council (LMC), where a group of LLMs collaborate to create tests, respond to them, and evaluate each other's responses to produce a ranking.
In a detailed case study on emotional intelligence, we deploy a council of 20 recent LLMs to rank each other on open-ended responses to interpersonal conflicts.
Our results show that the LMC produces rankings that are more separable and more robust, and through a user study, we show that they are more consistent with human evaluations than any individual LLM judge.
arXiv Detail & Related papers (2024-06-12T19:05:43Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs.
We propose a novel framework that can automatically evaluate LLMs through a peer-review process.
arXiv Detail & Related papers (2024-01-28T12:33:14Z) - Assessing and Understanding Creativity in Large Language Models [33.37237667182931]
This paper aims to establish an efficient framework for assessing the level of creativity in large language models (LLMs)
By adapting the Torrance Tests of Creative Thinking, the research evaluates the creative performance of various LLMs across 7 tasks.
We found that the creativity of LLMs primarily falls short in originality, while excelling in elaboration.
arXiv Detail & Related papers (2024-01-23T05:19:47Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
Multimodal large language models (MLLMs) have broadened the scope of AI applications.
Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences.
We propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge.
arXiv Detail & Related papers (2023-11-23T12:04:25Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.