LLaMA-MoE v2: Exploring Sparsity of LLaMA from Perspective of Mixture-of-Experts with Post-Training
- URL: http://arxiv.org/abs/2411.15708v1
- Date: Sun, 24 Nov 2024 04:26:04 GMT
- Title: LLaMA-MoE v2: Exploring Sparsity of LLaMA from Perspective of Mixture-of-Experts with Post-Training
- Authors: Xiaoye Qu, Daize Dong, Xuyang Hu, Tong Zhu, Weigao Sun, Yu Cheng,
- Abstract summary: Mixture-of-Experts (MoE) models have gained increasing popularity for scaling model size while keeping the number of activated parameters constant.
We thoroughly investigate the sparsity of the dense LLaMA model by constructing MoE for both the attention (i.e. Attention MoE) and (i.e., MoE) modules in the transformer blocks.
To counteract the performance degradation resulting from increased sparsity, we design a two-stage post-training strategy.
- Score: 18.49753274534983
- License:
- Abstract: Recently, inspired by the concept of sparsity, Mixture-of-Experts (MoE) models have gained increasing popularity for scaling model size while keeping the number of activated parameters constant. In this study, we thoroughly investigate the sparsity of the dense LLaMA model by constructing MoE for both the attention (i.e., Attention MoE) and MLP (i.e., MLP MoE) modules in the transformer blocks. Specifically, we investigate different expert construction methods and granularities under the same activation conditions to analyze the impact of sparsifying the model. Additionally, to comprehensively evaluate the model's capabilities across various domains (e.g., conversation, code, math) after sparsification, we apply sparsity to the instructed large language models (LLMs) and construct instructed MoE models. To counteract the performance degradation resulting from increased sparsity, we design a two-stage post-training strategy to enhance model performance. Experiments on the LLaMA3 model demonstrate the potential effectiveness of this approach for future developments of instructed MoE models. The source codes and models are available at: \url{https://github.com/OpenSparseLLMs/LLaMA-MoE-v2}.
Related papers
- Scaling Diffusion Language Models via Adaptation from Autoregressive Models [105.70889434492143]
Diffusion Language Models (DLMs) have emerged as a promising new paradigm for text generative modeling.
We show that we can convert AR models ranging from 127M to 7B parameters into diffusion models DiffuGPT and DiffuLLaMA, using less than 200B tokens for training.
Our experimental results reveal that these models outperform earlier DLMs and are competitive with their AR counterparts.
arXiv Detail & Related papers (2024-10-23T14:04:22Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training [21.359073227913303]
Training MoE from scratch in a large-scale setting still suffers from data-hungry and instability problems.
Motivated by this limit, we investigate building MoE models from existing dense large language models.
Our LLaMA-MoE models significantly outperform dense models that contain similar activation parameters.
arXiv Detail & Related papers (2024-06-24T11:43:07Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - LLaVA-Gemma: Accelerating Multimodal Foundation Models with a Compact Language Model [4.6373877301731]
We train a suite of multimodal foundation models (MMFM) using the popular LLaVA framework with the recently released Gemma family of large language models (LLMs)
We test the effect of ablating three design features: pretraining the connector, utilizing a more powerful image backbone, and increasing the size of the language backbone.
The resulting models, which we call LLaVA-Gemma, exhibit moderate performance on an array of evaluations, but fail to improve past the current comparably sized SOTA models.
arXiv Detail & Related papers (2024-03-29T21:32:50Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
We study structured pruning as an effective means to develop smaller LLMs from pre-trained, larger models.
Our approach employs two key techniques: (1) targeted structured pruning, which prunes a larger model to a specified target shape by removing layers, heads, and intermediate and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading, which dynamically updates the composition of sampled data in each training batch based on varying losses across different domains.
arXiv Detail & Related papers (2023-10-10T15:13:30Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
Mixture of Experts layers (MoEs) enable efficient scaling of language models through conditional computation.
This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings.
arXiv Detail & Related papers (2021-12-20T17:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.