A review on Machine Learning based User-Centric Multimedia Streaming Techniques
- URL: http://arxiv.org/abs/2411.15801v1
- Date: Sun, 24 Nov 2024 12:07:47 GMT
- Title: A review on Machine Learning based User-Centric Multimedia Streaming Techniques
- Authors: Monalisa Ghosh, Chetna Singhal,
- Abstract summary: All formats of videos (conventional and 360$o$) undergo processing, compression, and transmission across dynamic wireless channels.
This causes video impairments, leading to quality degradation.
Efficient multimedia streaming techniques can improve the service quality while dealing with dynamic network and end-user challenges.
- Score: 5.34064424681599
- License:
- Abstract: The multimedia content and streaming are a major means of information exchange in the modern era and there is an increasing demand for such services. This coupled with the advancement of future wireless networks B5G/6G and the proliferation of intelligent handheld mobile devices, has facilitated the availability of multimedia content to heterogeneous mobile users. Apart from the conventional video, the 360$^o$ videos have gained popularity with the emerging virtual reality applications. All formats of videos (conventional and 360$^o$) undergo processing, compression, and transmission across dynamic wireless channels with restricted bandwidth to facilitate the streaming services. This causes video impairments, leading to quality degradation and poses challenges in delivering good Quality-of-Experience (QoE) to the viewers. The QoE is a prominent subjective quality measure to assess multimedia services. This requires end-to-end QoE evaluation. Efficient multimedia streaming techniques can improve the service quality while dealing with dynamic network and end-user challenges. A paradigm shift in user-centric multimedia services is envisioned with a focus on Machine Learning (ML) based QoE modeling and streaming strategies. This survey paper presents a comprehensive overview of the overall and continuous, time varying QoE modeling for the purpose of QoE management in multimedia services. It also examines the recent research on intelligent and adaptive multimedia streaming strategies, with a special emphasis on ML based techniques for video (conventional and 360$^o$) streaming. This paper discusses the overall and continuous QoE modeling to optimize the end-user viewing experience, efficient video streaming with a focus on user-centric strategies, associated datasets for modeling and streaming, along with existing shortcoming and open challenges.
Related papers
- Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models [59.061552498630874]
We introduce the LIVE-Viasat Real-World Satellite QoE Database.
This database consists of 179 videos recorded from real-world streaming services affected by various authentic distortion patterns.
We demonstrate the usefulness of this unique new resource by evaluating the efficacy of QoE-prediction models on it.
We also created a new model that maps the network parameters to predicted human perception scores, which can be used by ISPs to optimize the video streaming quality of their networks.
arXiv Detail & Related papers (2024-10-17T18:22:50Z) - Subjective and Objective Quality-of-Experience Evaluation Study for Live Video Streaming [51.712182539961375]
We conduct a comprehensive study of subjective and objective QoE evaluations for live video streaming.
For the subjective QoE study, we introduce the first live video streaming QoE dataset, TaoLive QoE.
A human study was conducted to derive subjective QoE scores of videos in the TaoLive QoE dataset.
We propose an end-to-end QoE evaluation model, Tao-QoE, which integrates multi-scale semantic features and optical flow-based motion features.
arXiv Detail & Related papers (2024-09-26T07:22:38Z) - LMM-VQA: Advancing Video Quality Assessment with Large Multimodal Models [53.64461404882853]
Video quality assessment (VQA) algorithms are needed to monitor and optimize the quality of streaming videos.
Here, we propose the first Large Multi-Modal Video Quality Assessment (LMM-VQA) model, which introduces a novel visual modeling strategy for quality-aware feature extraction.
arXiv Detail & Related papers (2024-08-26T04:29:52Z) - Machine Learning-Driven Open-Source Framework for Assessing QoE in Multimedia Networks [0.18749305679160366]
Service providers must maintain high standards of quality of service and quality of experience (QoE) to ensure user satisfaction.
QoE, which reflects user satisfaction with service quality, is a key metric for multimedia services.
This paper introduces a machine learning-based framework for objectively assessing QoE in multimedia networks.
arXiv Detail & Related papers (2024-06-12T18:07:06Z) - A Survey on Generative AI and LLM for Video Generation, Understanding, and Streaming [26.082980156232086]
Top-trending AI technologies, i.e., generative artificial intelligence (Generative AI) and large language models (LLMs), are reshaping the field of video technology.
The paper highlights the innovative use of these technologies in producing highly realistic videos.
In the realm of video streaming, the paper discusses how LLMs contribute to more efficient and user-centric streaming experiences.
arXiv Detail & Related papers (2024-01-30T14:37:10Z) - MVBench: A Comprehensive Multi-modal Video Understanding Benchmark [63.14000659130736]
We introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench.
We first introduce a novel static-to-dynamic method to define these temporal-related tasks.
Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task.
arXiv Detail & Related papers (2023-11-28T17:59:04Z) - Telepresence Video Quality Assessment [13.417089780219326]
We create an online video quality prediction framework for live streaming, using a multi-modal learning framework with separate pathways to compute visual and audio quality predictions.
Our all-in-one model is able to provide accurate quality predictions at the patch, frame, clip, and audiovisual levels.
arXiv Detail & Related papers (2022-07-20T15:02:55Z) - A Brief Survey on Adaptive Video Streaming Quality Assessment [30.253712568568876]
Quality of experience (QoE) assessment for adaptive video streaming plays a significant role in advanced network management systems.
We analyze and compare different variations of objective QoE assessment models with or without using machine learning techniques for adaptive video streaming.
We find that existing video streaming QoE assessment models still have limited performance, which makes it difficult to be applied in practical communication systems.
arXiv Detail & Related papers (2022-02-25T21:38:14Z) - Cross Layer Optimization and Distributed Reinforcement Learning for Wireless 360° Video Streaming [54.60967639512643]
We propose a cross layer optimization approach that maximizes the available rate to each user and efficiently uses it to maximize users' QoE.
We show that the problem can be decoupled into two interrelated subproblems.
An actor-critic deep reinforcement learning (DRL) is proposed to leverage the parallel training of multiple independent agents and solve the application layer subproblem.
arXiv Detail & Related papers (2020-11-12T12:59:10Z) - VMSMO: Learning to Generate Multimodal Summary for Video-based News
Articles [63.32111010686954]
We propose the task of Video-based Multimodal Summarization with Multimodal Output (VMSMO)
The main challenge in this task is to jointly model the temporal dependency of video with semantic meaning of article.
We propose a Dual-Interaction-based Multimodal Summarizer (DIMS), consisting of a dual interaction module and multimodal generator.
arXiv Detail & Related papers (2020-10-12T02:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.