An AutoML-based approach for Network Intrusion Detection
- URL: http://arxiv.org/abs/2411.15920v1
- Date: Sun, 24 Nov 2024 17:07:46 GMT
- Title: An AutoML-based approach for Network Intrusion Detection
- Authors: Nana Kankam Gyimah, Judith Mwakalonge, Gurcan Comert, Saidi Siuhi, Robert Akinie, Methusela Sulle, Denis Ruganuza, Benibo Izison, Arthur Mukwaya,
- Abstract summary: We present an automated machine learning (AutoML) approach for network intrusion detection, leveraging a stacked ensemble model developed using the MLJAR AutoML framework.
Our methodology combines multiple machine learning algorithms, including LightGBM, CatBoost, and XGBoost, to enhance detection accuracy and robustness.
- Score: 4.353365283165518
- License:
- Abstract: In this paper, we present an automated machine learning (AutoML) approach for network intrusion detection, leveraging a stacked ensemble model developed using the MLJAR AutoML framework. Our methodology combines multiple machine learning algorithms, including LightGBM, CatBoost, and XGBoost, to enhance detection accuracy and robustness. By automating model selection, feature engineering, and hyperparameter tuning, our approach reduces the manual overhead typically associated with traditional machine learning methods. Extensive experimentation on the NSL-KDD dataset demonstrates that the stacked ensemble model outperforms individual models, achieving high accuracy and minimizing false positives. Our findings underscore the benefits of using AutoML for network intrusion detection, as the AutoML-driven stacked ensemble achieved the highest performance with 90\% accuracy and an 89\% F1 score, outperforming individual models like Random Forest (78\% accuracy, 78\% F1 score), XGBoost and CatBoost (both 80\% accuracy, 80\% F1 score), and LightGBM (78\% accuracy, 78\% F1 score), providing a more adaptable and efficient solution for network security applications.
Related papers
- AutoFT: Learning an Objective for Robust Fine-Tuning [60.641186718253735]
Foundation models encode rich representations that can be adapted to downstream tasks by fine-tuning.
Current approaches to robust fine-tuning use hand-crafted regularization techniques.
We propose AutoFT, a data-driven approach for robust fine-tuning.
arXiv Detail & Related papers (2024-01-18T18:58:49Z) - AutoMix: Automatically Mixing Language Models [62.51238143437967]
Large language models (LLMs) are now available from cloud API providers in various sizes and configurations.
We present Automix, an approach that strategically routes queries to larger LMs, based on the approximate correctness of outputs from a smaller LM.
arXiv Detail & Related papers (2023-10-19T17:57:39Z) - A Dependable Hybrid Machine Learning Model for Network Intrusion
Detection [1.222622290392729]
We propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability.
Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022.
arXiv Detail & Related papers (2022-12-08T20:19:27Z) - A Deep Neural Networks ensemble workflow from hyperparameter search to
inference leveraging GPU clusters [0.0]
AutoML seeks to automatically build ensembles of Deep Neural Networks (DNNs) to achieve qualitative predictions.
We propose a new AutoML to build a larger library of accurate and diverse individual models to then construct ensembles.
New ensemble selection method based on a multi-objective greedy algorithm is proposed to generate accurate ensembles.
arXiv Detail & Related papers (2022-08-30T08:04:19Z) - An Automated Machine Learning (AutoML) Method for Driving Distraction
Detection Based on Lane-Keeping Performance [2.3951613028271397]
This study proposes a domain-specific automated machine learning (AutoML) to self-learn the optimal models to detect distraction.
The proposed AutoGBM method is found to be reliable and promising to predict phone-related driving distractions.
The purposed AutoGBM not only produces better performance with fewer features; but also provides data-driven insights about system design.
arXiv Detail & Related papers (2021-03-10T12:37:18Z) - Interpret-able feedback for AutoML systems [5.5524559605452595]
Automated machine learning (AutoML) systems aim to enable training machine learning (ML) models for non-ML experts.
A shortcoming of these systems is that when they fail to produce a model with high accuracy, the user has no path to improve the model.
We introduce an interpretable data feedback solution for AutoML.
arXiv Detail & Related papers (2021-02-22T18:54:26Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
We propose the first robust AutoML framework, Robusta--based on reinforcement learning (RL)
We show that the framework is able to improve the model robustness by up to 22% while maintaining competitive accuracy on benign samples.
arXiv Detail & Related papers (2021-01-15T03:12:29Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
We present a novel deep metric meta-generation method to generate a specific metric for a new few-shot learning task.
In this study, we structure the metric using a three-layer deep attentive network that is flexible enough to produce a discriminative metric for each task.
We gain surprisingly obvious performance improvement over state-of-the-art competitors, especially in the challenging cases.
arXiv Detail & Related papers (2020-12-03T02:07:43Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
We propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks.
Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.
arXiv Detail & Related papers (2020-06-25T09:57:47Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z) - AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data [120.2298620652828]
We introduce AutoGluon-Tabular, an open-source AutoML framework that requires only a single line of Python to train highly accurate machine learning models.
Tests on a suite of 50 classification and regression tasks from Kaggle and the OpenML AutoML Benchmark reveal that AutoGluon is faster, more robust, and much more accurate.
arXiv Detail & Related papers (2020-03-13T23:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.