SAVEn-Vid: Synergistic Audio-Visual Integration for Enhanced Understanding in Long Video Context
- URL: http://arxiv.org/abs/2411.16213v1
- Date: Mon, 25 Nov 2024 09:22:13 GMT
- Title: SAVEn-Vid: Synergistic Audio-Visual Integration for Enhanced Understanding in Long Video Context
- Authors: Jungang Li, Sicheng Tao, Yibo Yan, Xiaojie Gu, Haodong Xu, Xu Zheng, Yuanhuiyi Lyu, Linfeng Zhang, Xuming Hu,
- Abstract summary: We introduce SAVEn-Vid, the first-ever long audio-visual video dataset comprising over 58k audio-visual instructions.
We present AVBench, a benchmark containing 2,500 QAs designed to evaluate models on enhanced audio-visual comprehension tasks within long video.
Experiments demonstrate that SAVEnVideo outperforms the best Video-LLM by 3.61% on the zero-shot long video task (Video-MME) and surpasses the leading audio-visual LLM by 1.29% on the zero-shot audio-visual task (Music-AVQA)
- Score: 19.224601064352846
- License:
- Abstract: Endeavors have been made to explore Large Language Models for video analysis (Video-LLMs), particularly in understanding and interpreting long videos. However, existing Video-LLMs still face challenges in effectively integrating the rich and diverse audio-visual information inherent in long videos, which is crucial for comprehensive understanding. This raises the question: how can we leverage embedded audio-visual information to enhance long video understanding? Therefore, (i) we introduce SAVEn-Vid, the first-ever long audio-visual video dataset comprising over 58k audio-visual instructions. (ii) From the model perspective, we propose a time-aware Audio-Visual Large Language Model (AV-LLM), SAVEnVideo, fine-tuned on SAVEn-Vid. (iii) Besides, we present AVBench, a benchmark containing 2,500 QAs designed to evaluate models on enhanced audio-visual comprehension tasks within long video, challenging their ability to handle intricate audio-visual interactions. Experiments on AVBench reveal the limitations of current AV-LLMs. Experiments also demonstrate that SAVEnVideo outperforms the best Video-LLM by 3.61% on the zero-shot long video task (Video-MME) and surpasses the leading audio-visual LLM by 1.29% on the zero-shot audio-visual task (Music-AVQA). Consequently, at the 7B parameter scale, SAVEnVideo can achieve state-of-the-art performance. Our dataset and code will be released at https://ljungang.github.io/SAVEn-Vid/ upon acceptance.
Related papers
- Audio-visual training for improved grounding in video-text LLMs [1.9320359360360702]
We propose a model architecture that handles audio-visual inputs explicitly.
We train our model with both audio and visual data from a video instruction-tuning dataset.
For better evaluation of audio-visual models, we also release a human-annotated benchmark dataset.
arXiv Detail & Related papers (2024-07-21T03:59:14Z) - video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models [27.54879344983513]
Video-SALMONN can understand not only visual frame sequences, audio events and music, but speech as well.
Video-SALMONN demonstrates remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other av-LLMs.
arXiv Detail & Related papers (2024-06-22T01:36:11Z) - VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling [71.01050359126141]
We propose VidMuse, a framework for generating music aligned with video inputs.
VidMuse produces high-fidelity music that is both acoustically and semantically aligned with the video.
arXiv Detail & Related papers (2024-06-06T17:58:11Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2 is a new family of video foundation models (FM) that achieve state-of-the-art results in video recognition, video-speech tasks, and video-centric tasks.
Our core design is a progressive training approach that unifies the masked video modeling, cross contrastive learning, and prediction token, scaling up to 6B video size.
arXiv Detail & Related papers (2024-03-22T17:57:42Z) - Audio-Visual LLM for Video Understanding [25.963166809113005]
This paper presents Audio-Visual LLM, a Multimodal Large Language Model that takes both visual and auditory inputs for holistic video understanding.
We introduce a high-quality video instruction dataset, derived from GPT-4.
Experiments demonstrate that Audio-Visual LLM impressively achieves strong zero-shot results across a range of video understanding tasks.
arXiv Detail & Related papers (2023-12-11T02:50:46Z) - Text-to-feature diffusion for audio-visual few-shot learning [59.45164042078649]
Few-shot learning from video data is a challenging and underexplored, yet much cheaper, setup.
We introduce a unified audio-visual few-shot video classification benchmark on three datasets.
We show that AV-DIFF obtains state-of-the-art performance on our proposed benchmark for audio-visual few-shot learning.
arXiv Detail & Related papers (2023-09-07T17:30:36Z) - Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video
Understanding [61.80870130860662]
Video-LLaMA is a framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video.
Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual and audio encoders and the frozen LLMs.
We found Video-LLaMA shows the ability to perceive and comprehend video content and generate meaningful responses.
arXiv Detail & Related papers (2023-06-05T13:17:27Z) - ECLIPSE: Efficient Long-range Video Retrieval using Sight and Sound [103.28102473127748]
We introduce an audiovisual method for long-range text-to-video retrieval.
Our approach aims to retrieve minute-long videos that capture complex human actions.
Our method is 2.92x faster and 2.34x memory-efficient than long-range video-only approaches.
arXiv Detail & Related papers (2022-04-06T14:43:42Z) - AudioVisual Video Summarization [103.47766795086206]
In video summarization, existing approaches just exploit the visual information while neglecting the audio information.
We propose to jointly exploit the audio and visual information for the video summarization task, and develop an AudioVisual Recurrent Network (AVRN) to achieve this.
arXiv Detail & Related papers (2021-05-17T08:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.