Efficient pooling of predictions via kernel embeddings
- URL: http://arxiv.org/abs/2411.16246v1
- Date: Mon, 25 Nov 2024 10:04:37 GMT
- Title: Efficient pooling of predictions via kernel embeddings
- Authors: Sam Allen, David Ginsbourger, Johanna Ziegel,
- Abstract summary: Probabilistic predictions are probability distributions over the set of possible outcomes.
They are typically combined by linearly pooling the individual predictive distributions.
Weights assigned to each prediction can be estimated based on their past performance.
This can be achieved by finding the weights that optimise a proper scoring rule over some training data.
- Score: 0.24578723416255752
- License:
- Abstract: Probabilistic predictions are probability distributions over the set of possible outcomes. Such predictions quantify the uncertainty in the outcome, making them essential for effective decision making. By combining multiple predictions, the information sources used to generate the predictions are pooled, often resulting in a more informative forecast. Probabilistic predictions are typically combined by linearly pooling the individual predictive distributions; this encompasses several ensemble learning techniques, for example. The weights assigned to each prediction can be estimated based on their past performance, allowing more accurate predictions to receive a higher weight. This can be achieved by finding the weights that optimise a proper scoring rule over some training data. By embedding predictions into a Reproducing Kernel Hilbert Space (RKHS), we illustrate that estimating the linear pool weights that optimise kernel-based scoring rules is a convex quadratic optimisation problem. This permits an efficient implementation of the linear pool when optimally combining predictions on arbitrary outcome domains. This result also holds for other combination strategies, and we additionally study a flexible generalisation of the linear pool that overcomes some of its theoretical limitations, whilst allowing an efficient implementation within the RKHS framework. These approaches are compared in an application to operational wind speed forecasts, where this generalisation is found to offer substantial improvements upon the traditional linear pool.
Related papers
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Improving probabilistic forecasts of extreme wind speeds by training statistical post-processing models with weighted scoring rules [0.0]
Training using the threshold-weighted continuous ranked probability score (twCRPS) leads to improved extreme event performance of post-processing models.
We find a distribution body-tail trade-off where improved performance for probabilistic predictions of extreme events comes with worse performance for predictions of the distribution body.
arXiv Detail & Related papers (2024-07-22T11:07:52Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - UTOPIA: Universally Trainable Optimal Prediction Intervals Aggregation [9.387706860375461]
We introduce a novel strategy called Universally Trainable Optimal Predictive Intervals Aggregation (UTOPIA)
This technique excels in efficiently aggregating multiple prediction intervals while maintaining a small average width of the prediction band and ensuring coverage.
It is validated through its application to synthetic data and two real-world datasets in finance and macroeconomics.
arXiv Detail & Related papers (2023-06-28T20:38:37Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Aggregating distribution forecasts from deep ensembles [0.0]
We propose a general quantile aggregation framework for deep ensembles.
We show that combining forecast distributions from deep ensembles can substantially improve the predictive performance.
arXiv Detail & Related papers (2022-04-05T15:42:51Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Optimized conformal classification using gradient descent approximation [0.2538209532048866]
Conformal predictors allow predictions to be made with a user-defined confidence level.
We consider an approach to train the conformal predictor directly with maximum predictive efficiency.
We test the method on several real world data sets and find that the method is promising.
arXiv Detail & Related papers (2021-05-24T13:14:41Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - Fast, Optimal, and Targeted Predictions using Parametrized Decision
Analysis [0.0]
We develop a class of parametrized actions for Bayesian decision analysis that produce optimal, scalable, and simple targeted predictions.
Predictions are constructed for physical activity data from the National Health and Nutrition Examination Survey.
arXiv Detail & Related papers (2020-06-23T15:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.