Transparent Neighborhood Approximation for Text Classifier Explanation
- URL: http://arxiv.org/abs/2411.16251v1
- Date: Mon, 25 Nov 2024 10:10:09 GMT
- Title: Transparent Neighborhood Approximation for Text Classifier Explanation
- Authors: Yi Cai, Arthur Zimek, Eirini Ntoutsi, Gerhard Wunder,
- Abstract summary: This paper introduces a probability-based editing method as an alternative to black-box text generators.
The resultant explanation method, XPROB, exhibits competitive performance according to the evaluation conducted on two real-world datasets.
- Score: 12.803856207094615
- License:
- Abstract: Recent literature highlights the critical role of neighborhood construction in deriving model-agnostic explanations, with a growing trend toward deploying generative models to improve synthetic instance quality, especially for explaining text classifiers. These approaches overcome the challenges in neighborhood construction posed by the unstructured nature of texts, thereby improving the quality of explanations. However, the deployed generators are usually implemented via neural networks and lack inherent explainability, sparking arguments over the transparency of the explanation process itself. To address this limitation while preserving neighborhood quality, this paper introduces a probability-based editing method as an alternative to black-box text generators. This approach generates neighboring texts by implementing manipulations based on in-text contexts. Substituting the generator-based construction process with recursive probability-based editing, the resultant explanation method, XPROB (explainer with probability-based editing), exhibits competitive performance according to the evaluation conducted on two real-world datasets. Additionally, XPROB's fully transparent and more controllable construction process leads to superior stability compared to the generator-based explainers.
Related papers
- Decoding Report Generators: A Cyclic Vision-Language Adapter for Counterfactual Explanations [7.163217901775776]
This paper introduces an innovative approach to enhance the explainability of text generated by report generation models.
Our method employs cyclic text manipulation and visual comparison to identify and elucidate the features in the original content.
Our findings demonstrate the potential of this method to significantly enhance the interpretability and transparency of AI-generated reports.
arXiv Detail & Related papers (2024-11-08T01:46:11Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Efficient Guided Generation for Large Language Models [0.21485350418225244]
We show how the problem of neural text generation can be constructively reformulated in terms of transitions between the states of a finite-state machine.
This framework leads to an efficient approach to guiding text generation with regular expressions and context-free grammars.
arXiv Detail & Related papers (2023-07-19T01:14:49Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
Conceptually, LOCCO can be viewed as a form of self-learning where the semantic being trained is used to generate annotations for unlabeled text.
As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model.
arXiv Detail & Related papers (2023-05-31T16:47:20Z) - Explaining text classifiers through progressive neighborhood
approximation with realistic samples [19.26084350822197]
The importance of neighborhood construction in local explanation methods has been highlighted in the literature.
Several attempts have been made to improve neighborhood quality for high-dimensional data, for example, texts, by adopting generative models.
We propose a progressive approximation approach that refines the neighborhood of a to-be-explained decision with a careful two-stage approach.
arXiv Detail & Related papers (2023-02-11T11:42:39Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
We apply a statistical tool, model criticism in latent space, to evaluate the high-level structure of generated text.
We perform experiments on three representative aspects of high-level discourse -- coherence, coreference, and topicality.
We find that transformer-based language models are able to capture topical structures but have a harder time maintaining structural coherence or modeling coreference.
arXiv Detail & Related papers (2022-10-16T04:35:58Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMER is a Transformer-based pre-trained model with multi-granularity sparse attentions for extractive summarization.
Experiments on both single- and multi-document summarization tasks show that HETFORMER achieves state-of-the-art performance in Rouge F1.
arXiv Detail & Related papers (2021-10-12T22:42:31Z) - Contextualized Perturbation for Textual Adversarial Attack [56.370304308573274]
Adversarial examples expose the vulnerabilities of natural language processing (NLP) models.
This paper presents CLARE, a ContextuaLized AdversaRial Example generation model that produces fluent and grammatical outputs.
arXiv Detail & Related papers (2020-09-16T06:53:15Z) - Syntax-driven Iterative Expansion Language Models for Controllable Text
Generation [2.578242050187029]
We propose a new paradigm for introducing a syntactic inductive bias into neural text generation.
Our experiments show that this paradigm is effective at text generation, with quality between LSTMs and Transformers, and comparable diversity.
arXiv Detail & Related papers (2020-04-05T14:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.