DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation
- URL: http://arxiv.org/abs/2411.16301v1
- Date: Mon, 25 Nov 2024 11:36:34 GMT
- Title: DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation
- Authors: Yuxuan Yang, Jingyao Wang, Tao Geng, Wenwen Qiang, Changwen Zheng, Fuchun Sun,
- Abstract summary: We propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation.
Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone.
We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency.
- Score: 25.532400438564334
- License:
- Abstract: Interior design is a complex and creative discipline involving aesthetics, functionality, ergonomics, and materials science. Effective solutions must meet diverse requirements, typically producing multiple deliverables such as renderings and design drawings from various perspectives. Consequently, interior design processes are often inefficient and demand significant creativity. With advances in machine learning, generative models have emerged as a promising means of improving efficiency by creating designs from text descriptions or sketches. However, few generative works focus on interior design, leading to substantial discrepancies between outputs and practical needs, such as differences in size, spatial scope, and the lack of controllable generation quality. To address these challenges, we propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation. Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone. We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency. Simultaneously, we construct an interior design-specific dataset, DesignHelper, consisting of over 400 solutions across more than 15 spatial types and 15 design styles. This dataset helps fine-tune DiffDesign. Extensive experiments conducted on various benchmark datasets demonstrate the effectiveness and robustness of DiffDesign.
Related papers
- PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We conduct extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Design is a personalized interior designer that allows users to generate and visualize their design goals through natural language communication.
I-Design starts with a team of large language model agents that engage in dialogues and logical reasoning with one another.
The final design is then constructed in 3D by retrieving and integrating assets from an existing object database.
arXiv Detail & Related papers (2024-04-03T16:17:53Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - iDesigner: A High-Resolution and Complex-Prompt Following Text-to-Image
Diffusion Model for Interior Design [42.061819736162356]
We propose a fine-tuning strategy with curriculum learning and reinforcement learning from CLIP feedback to enhance the prompt-following capabilities of our approach.
The experimental results on the collected dataset demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2023-12-07T14:37:01Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Physical Design using Differentiable Learned Simulators [9.380022457753938]
In inverse design, learned forward simulators are combined with gradient-based design optimization.
This framework produces high-quality designs by propagating through trajectories of hundreds of steps.
Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization.
arXiv Detail & Related papers (2022-02-01T19:56:39Z) - PaDGAN: A Generative Adversarial Network for Performance Augmented
Diverse Designs [13.866787416457454]
We develop a variant of the Generative Adversarial Network, named "Performance Augmented Diverse Generative Adversarial Network" or PaDGAN, which can generate novel high-quality designs with good coverage of the design space.
In comparison to a vanilla Generative Adversarial Network, on average, it generates samples with a 28% higher mean quality score with larger diversity and without the mode collapse issue.
arXiv Detail & Related papers (2020-02-26T04:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.