Human-Calibrated Automated Testing and Validation of Generative Language Models
- URL: http://arxiv.org/abs/2411.16391v1
- Date: Mon, 25 Nov 2024 13:53:36 GMT
- Title: Human-Calibrated Automated Testing and Validation of Generative Language Models
- Authors: Agus Sudjianto, Aijun Zhang, Srinivas Neppalli, Tarun Joshi, Michal Malohlava,
- Abstract summary: This paper introduces a comprehensive framework for the evaluation and validation of generative language models (GLMs)
It focuses on Retrieval-Augmented Generation (RAG) systems deployed in high-stakes domains such as banking.
- Score: 3.2855317710497633
- License:
- Abstract: This paper introduces a comprehensive framework for the evaluation and validation of generative language models (GLMs), with a focus on Retrieval-Augmented Generation (RAG) systems deployed in high-stakes domains such as banking. GLM evaluation is challenging due to open-ended outputs and subjective quality assessments. Leveraging the structured nature of RAG systems, where generated responses are grounded in a predefined document collection, we propose the Human-Calibrated Automated Testing (HCAT) framework. HCAT integrates a) automated test generation using stratified sampling, b) embedding-based metrics for explainable assessment of functionality, risk and safety attributes, and c) a two-stage calibration approach that aligns machine-generated evaluations with human judgments through probability calibration and conformal prediction. In addition, the framework includes robustness testing to evaluate model performance against adversarial, out-of-distribution, and varied input conditions, as well as targeted weakness identification using marginal and bivariate analysis to pinpoint specific areas for improvement. This human-calibrated, multi-layered evaluation framework offers a scalable, transparent, and interpretable approach to GLM assessment, providing a practical and reliable solution for deploying GLMs in applications where accuracy, transparency, and regulatory compliance are paramount.
Related papers
- RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Aligning Model Evaluations with Human Preferences: Mitigating Token Count Bias in Language Model Assessments [2.1370543868467275]
This follow-up paper explores methods to align Large Language Models evaluator preferences with human evaluations.
We employed Bayesian statistics and a t-test to quantify this bias and developed a recalibration procedure to adjust the GPTScorer.
Our findings significantly improve aligning the recalibrated LLM evaluator with human evaluations across multiple use cases.
arXiv Detail & Related papers (2024-07-05T09:26:40Z) - ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation [48.54271457765236]
Large Language Models (LLMs) can elicit unintended and even harmful content when misaligned with human values.
Current evaluation benchmarks predominantly employ expert-designed contextual scenarios to assess how well LLMs align with human values.
We propose ALI-Agent, an evaluation framework that leverages the autonomous abilities of LLM-powered agents to conduct in-depth and adaptive alignment assessments.
arXiv Detail & Related papers (2024-05-23T02:57:42Z) - CheckEval: Robust Evaluation Framework using Large Language Model via Checklist [6.713203569074019]
We introduce CheckEval, a novel evaluation framework using Large Language Models.
CheckEval addresses the challenges of ambiguity and inconsistency in current evaluation methods.
arXiv Detail & Related papers (2024-03-27T17:20:39Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
We propose AutoCalibrate, a multi-stage, gradient-free approach to calibrate and align an LLM-based evaluator toward human preference.
Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels.
Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration.
arXiv Detail & Related papers (2023-09-23T08:46:11Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.