Human-Calibrated Automated Testing and Validation of Generative Language Models
- URL: http://arxiv.org/abs/2411.16391v2
- Date: Sat, 07 Dec 2024 16:12:38 GMT
- Title: Human-Calibrated Automated Testing and Validation of Generative Language Models
- Authors: Agus Sudjianto, Aijun Zhang, Srinivas Neppalli, Tarun Joshi, Michal Malohlava,
- Abstract summary: This paper introduces a comprehensive framework for the evaluation and validation of generative language models (GLMs)
It focuses on Retrieval-Augmented Generation (RAG) systems deployed in high-stakes domains such as banking.
- Score: 3.2855317710497633
- License:
- Abstract: This paper introduces a comprehensive framework for the evaluation and validation of generative language models (GLMs), with a focus on Retrieval-Augmented Generation (RAG) systems deployed in high-stakes domains such as banking. GLM evaluation is challenging due to open-ended outputs and subjective quality assessments. Leveraging the structured nature of RAG systems, where generated responses are grounded in a predefined document collection, we propose the Human-Calibrated Automated Testing (HCAT) framework. HCAT integrates a) automated test generation using stratified sampling, b) embedding-based metrics for explainable assessment of functionality, risk and safety attributes, and c) a two-stage calibration approach that aligns machine-generated evaluations with human judgments through probability calibration and conformal prediction. In addition, the framework includes robustness testing to evaluate model performance against adversarial, out-of-distribution, and varied input conditions, as well as targeted weakness identification using marginal and bivariate analysis to pinpoint specific areas for improvement. This human-calibrated, multi-layered evaluation framework offers a scalable, transparent, and interpretable approach to GLM assessment, providing a practical and reliable solution for deploying GLMs in applications where accuracy, transparency, and regulatory compliance are paramount.
Related papers
- Scoring Verifiers: Evaluating Synthetic Verification in Code and Reasoning [59.25951947621526]
We introduce benchmarks designed to evaluate the impact of synthetic verification methods on assessing solution correctness.
We analyze synthetic verification methods in standard, reasoning-based, and reward-based LLMs.
Our results show that recent reasoning models significantly improve test case generation and that scaling test cases enhances verification accuracy.
arXiv Detail & Related papers (2025-02-19T15:32:11Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
Large language models (LLMs) have demonstrated significant utilities in real-world applications.
Benchmark evaluations are crucial for assessing the capabilities of LLMs.
arXiv Detail & Related papers (2025-02-13T03:43:33Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
We introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain.
Our benchmark is characterized by its multi-dimensional evaluation framework.
Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets.
arXiv Detail & Related papers (2024-12-17T15:38:42Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
Large Language Models (LLMs) excel at standardized tests while failing to demonstrate genuine language understanding and adaptability.
Our systematic analysis of NLP evaluation frameworks reveals pervasive vulnerabilities across the evaluation spectrum.
We lay the groundwork for new evaluation methods that resist manipulation, minimize data contamination, and assess domain-specific tasks.
arXiv Detail & Related papers (2024-12-02T20:49:21Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
We propose AutoCalibrate, a multi-stage, gradient-free approach to calibrate and align an LLM-based evaluator toward human preference.
Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels.
Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration.
arXiv Detail & Related papers (2023-09-23T08:46:11Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.