Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency
- URL: http://arxiv.org/abs/2411.16525v1
- Date: Mon, 25 Nov 2024 16:12:17 GMT
- Title: Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency
- Authors: Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, Han Liu,
- Abstract summary: Key contributions are prompt tuning on textitsingle-head transformers with only a textitsingle self-attention layer.
We prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions.
- Score: 13.566489504237868
- License:
- Abstract: We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-$dL$ and -in-$(1/\epsilon)$ lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \textit{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.
Related papers
- Towards Infinite-Long Prefix in Transformer [18.24137806007111]
We study the ability of Prompting and context-based fine-tuning methods to match the performance of full parameter fine-tuning.
We implement an algorithm that only needs to introduce and fine-tune a few extra trainable parameters instead of an infinite-long prefix.
Our method achieves superior or competitive performance compared to existing methods like full parameters fine-tuning, P-Tuning V2, and LoRA.
arXiv Detail & Related papers (2024-06-20T06:56:35Z) - IAPT: Instruction-Aware Prompt Tuning for Large Language Models [19.408462115679914]
We propose a novel prompt tuning method, Instruction-Aware Prompt Tuning (IAPT), that requires only four soft tokens.
First, we install a parameter-efficient soft prompt generator at each Transformer layer to generate idiosyncratic soft prompts for each input instruction.
Second, the soft prompt generators are modules with a bottleneck architecture consisting of a self-attention pooling operation, two linear projections, and an activation function.
arXiv Detail & Related papers (2024-05-28T14:11:01Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Universality and Limitations of Prompt Tuning [65.8354898840308]
We take one of the first steps to understand the role of soft-prompt tuning for transformer-based architectures.
We analyze prompt tuning from the lens of universality and limitations with finite-depth pretrained transformers for continuous-valued functions.
Our result guarantees the existence of a strong transformer with a prompt to approximate any sequence-to-sequence function in the set of Lipschitz functions.
arXiv Detail & Related papers (2023-05-30T06:47:07Z) - PTP: Boosting Stability and Performance of Prompt Tuning with
Perturbation-Based Regularizer [94.23904400441957]
We introduce perturbation-based regularizers, which can smooth the loss landscape, into prompt tuning.
We design two kinds of perturbation-based regularizers, including random-noise-based and adversarial-based.
Our new algorithms improve the state-of-the-art prompt tuning methods by 1.94% and 2.34% on SuperGLUE and FewGLUE benchmarks, respectively.
arXiv Detail & Related papers (2023-05-03T20:30:51Z) - Structured Prompt Tuning [83.71253868369999]
Instead of prepending a sequence of tunable embeddings to the input, we generate the soft prompt embeddings through a hypernetwork.
Our approach subsumes the standard prompt tuning, allows more flexibility in model design and can be applied to both single-task and multi-task training settings.
arXiv Detail & Related papers (2022-05-24T18:36:34Z) - Stable, Fast and Accurate: Kernelized Attention with Relative Positional
Encoding [63.539333383965726]
We propose a novel way to accelerate attention calculation for Transformers with relative positional encoding (RPE)
Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT)
arXiv Detail & Related papers (2021-06-23T17:51:26Z) - FSR: Accelerating the Inference Process of Transducer-Based Models by
Applying Fast-Skip Regularization [72.9385528828306]
A typical transducer model decodes the output sequence conditioned on the current acoustic state.
The number of blank tokens in the prediction results accounts for nearly 90% of all tokens.
We propose a method named fast-skip regularization, which tries to align the blank position predicted by a transducer with that predicted by a CTC model.
arXiv Detail & Related papers (2021-04-07T03:15:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.