EnStack: An Ensemble Stacking Framework of Large Language Models for Enhanced Vulnerability Detection in Source Code
- URL: http://arxiv.org/abs/2411.16561v1
- Date: Mon, 25 Nov 2024 16:47:10 GMT
- Title: EnStack: An Ensemble Stacking Framework of Large Language Models for Enhanced Vulnerability Detection in Source Code
- Authors: Shahriyar Zaman Ridoy, Md. Shazzad Hossain Shaon, Alfredo Cuzzocrea, Mst Shapna Akter,
- Abstract summary: We introduce EnStack, a novel ensemble stacking framework that enhances vulnerability detection using natural language processing (NLP) techniques.
Our approach synergizes multiple pre-trained large language models (LLMs) specialized in code understanding.
meta-classifiers consolidate the strengths of each LLM, resulting in a comprehensive model that excels in detecting subtle and complex vulnerabilities.
- Score: 1.9374282535132379
- License:
- Abstract: Automated detection of software vulnerabilities is critical for enhancing security, yet existing methods often struggle with the complexity and diversity of modern codebases. In this paper, we introduce EnStack, a novel ensemble stacking framework that enhances vulnerability detection using natural language processing (NLP) techniques. Our approach synergizes multiple pre-trained large language models (LLMs) specialized in code understanding CodeBERT for semantic analysis, GraphCodeBERT for structural representation, and UniXcoder for cross-modal capabilities. By fine-tuning these models on the Draper VDISC dataset and integrating their outputs through meta-classifiers such as Logistic Regression, Support Vector Machines (SVM), Random Forest, and XGBoost, EnStack effectively captures intricate code patterns and vulnerabilities that individual models may overlook. The meta-classifiers consolidate the strengths of each LLM, resulting in a comprehensive model that excels in detecting subtle and complex vulnerabilities across diverse programming contexts. Experimental results demonstrate that EnStack significantly outperforms existing methods, achieving notable improvements in accuracy, precision, recall, and F1-score. This work highlights the potential of ensemble LLM approaches in code analysis tasks and offers valuable insights into applying NLP techniques for advancing automated vulnerability detection.
Related papers
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment issues limit their project-specific optimization.
Code models such CodeBERT are easy to fine-tune, but it is often difficult to learn vulnerability semantics from complex code languages.
This paper introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) to improve the detection accuracy of code models.
arXiv Detail & Related papers (2024-06-10T00:05:49Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
We introduce MSIVD, multitask self-instructed fine-tuning for vulnerability detection, inspired by chain-of-thought prompting and LLM self-instruction.
Our experiments demonstrate that MSIVD achieves superior performance, outperforming the highest LLM-based vulnerability detector baseline (LineVul) with a F1 score of 0.92 on the BigVul dataset, and 0.48 on the PreciseBugs dataset.
arXiv Detail & Related papers (2024-06-09T19:18:05Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - A General Framework for Learning from Weak Supervision [93.89870459388185]
This paper introduces a general framework for learning from weak supervision (GLWS) with a novel algorithm.
Central to GLWS is an Expectation-Maximization (EM) formulation, adeptly accommodating various weak supervision sources.
We also present an advanced algorithm that significantly simplifies the EM computational demands.
arXiv Detail & Related papers (2024-02-02T21:48:50Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
We introduce a comprehensive vulnerability benchmark VulBench.
This benchmark aggregates high-quality data from a wide range of CTF challenges and real-world applications.
We find that several LLMs outperform traditional deep learning approaches in vulnerability detection.
arXiv Detail & Related papers (2023-11-21T08:20:39Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
We evaluate the effectiveness of 16 pre-trained Large Language Models on 5,000 code samples from five diverse security datasets.
Overall, LLMs show modest effectiveness in detecting vulnerabilities, obtaining an average accuracy of 62.8% and F1 score of 0.71 across datasets.
We find that advanced prompting strategies that involve step-by-step analysis significantly improve performance of LLMs on real-world datasets in terms of F1 score (by upto 0.18 on average)
arXiv Detail & Related papers (2023-11-16T13:17:20Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.